
Microsoft Visual Basic Version 4.0 ReadMe
Copyright Information
Questions and Answers About Microsoft Visual Basic for Windows Version 4.0
Setup Information
Data Access
OLE and Remote Automation
Controls and Other Objects
Setup Toolkit and SetupWizard
Language
Error Messages
Miscellaneous



Copyright © 1991-1995 Microsoft Corp.    All rights reserved.
Microsoft, MS, MS-DOS, Windows, Visual Basic, SourceSafe, Microsoft Press, Windows NT, 
and the Windows logo are either trademarks or registered trademarks of Microsoft 
Corporation.
Information in this document is subject to change without notice.    Companies, names, and 
data used in examples herein are fictitious unless otherwise noted. No part of this 
document may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, for any purpose, without express written permission of Microsoft Corporation.
The software and/or databases described in this document are furnished under a license 
agreement or nondisclosure agreement. The software and/or databases may be used or 
copied only in accordance with the terms of the agreement.    It is against the law to copy 
the software except as specifically allowed in the license or nondisclosure agreement.    No 
part of this document may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or information storage and 
retrieval systems, for any purpose other than the purchaser's personal use, without the 
express written permission of Microsoft Corporation.



Setup Information (ReadMe)

Software Installation Information
Master Setup Won't Run from a UNC Path
Using Disks with Distribution Media Format (DMF)
Copying Files from DMF Disks
Setup Does Not Launch Correctly From Drive B
Unable to Start DDE Communication with Program Manager



Miscellaneous Information (ReadMe)

Add list box to objects in PG Chapter 7 example
Books Online Path
Context-Sensitive Help Disabled on Some Dialogs
Debugging Tips
Development Environment Tips
Enterprise AutoLoad File Contains a Different Data Access Reference in 32-bit Versions
Errors Loading Visual Basic 3.0 Binary Projects From a Network
Guide to Data Access Objects changes
Height and Width Range for Grid Cells on the Form
Jump Paths for Help Components in 16-bit Visual Basic
Limitation on Number of Files on Project Load
Microsoft Access Version number
New Icons
Phone Information for UK Developer Support
Product Support Phone Number in Japan
Sample code for Font dialog box
Samples Help File Refers to Wrong Chapter For BIBLIO.VBP
Should Select Startup Module with Code Profiler
Some Differences Between Windows 95, Windows NT and Win16
Testing for multiple buttons
Using Compile on Demand



Setup Toolkit and SetupWizard (ReadMe)

Adding remote server support files in setup
Creating Example SETUP.LST Files
Directories Added to the SETUPKIT Directory
Remote Procedure Call (RPC) Files
SetupWizard Dependency File Notes for Microsoft Visual Basic
SetupWizard Macros Listing



Data Access (ReadMe)

General
Connecting to ODBC Data Sources with no DSN
Microsoft SQL Server Stored Procedures
Orphaned Stored Procedures
Specifying Quoted Strings When Using ODBC Data Sources
Visigenic Oracle 32 bit Driver Installation Requirements

Microsoft Jet Data Access Objects (Professional and Enterprise Editions Only)
"Communication Link Failure" Error
Accessing SQL Server 6.0 Tables with Identity Columns
Can't Open FoxPro Table Contained in a Database Container
Cascades, Local Tables and Replication Don't Mix
Creating a   Recordset   Against an ODBC Data Source  
DBEngine     IniPath   Now Uses Registry Entry  
Miscellaneous Jet Database Replication Issues
Difference in Behavior of Error Message 'Data Has Changed' 
Dynaset's Visibility of Extraneous Changes
GetRows   Example Incorrect Code  
Miscellaneous Jet Issues
Recordset   Object Doesn't Support   CreateDynaset   Method  
SystemDB   Property of the   DBEngine   object  
Use DAO to Access Local ISAM Databases
Using a Table Name When Addressing Fields in   Recordset   Objects  
Using   CompactDatabase   with Microsoft Access Databases  

Microsoft Remote Data Objects (RDO) (Enterprise Edition Only)
Creating Parameter Queries Example Incorrect
Executing RDO Queries Returning Multiple Resultsets
MaxRows   Property (Remote Data)  
ODBC Driver General Protection Faults When Given Incorrect Syntax
Remote Data Objects and Case-Sensitive Servers
Persistent Remote Data Object   rdoResultset   Objects  
Providing Parameters to Stored Procedures
Remote Data Objects and   RemoteData   Control Miscellaneous Information  
RemoteData Control   EOFAction   Property  
SQL Server 6.0 Transactions With Server-Side Cursors
Syntax For the   OpenResultset   Method  
Temporary Stored Procedures
Using a Forward-Only   rdoResultset  
Using Image or Text Data Types with the   RemoteData   Control or RDO  
Using   SQLExecDirect  
Using the   RemoteData   control and the SQL Property  
Working with BLOB Data Types and the ODBC Cursor Library

Crystal Reports (Professional and Enterprise Editions Only)
Paradox Engine Configuration Utility
Crystal VBX loses DataSource





OLE and Remote Automation (ReadMe)

OLE and Remote Automation
Call was Rejected by Callee
File Sharing for OLE and Data Access
Illegal Names in Classes
Insufficient Disk Space to Complete This Operation
Mapping Untrapped Errors in OLE Automation Objects
Memory Leaks with Remote Automation Applications on Windows NT Version 3.51
Releasing Pointers with Visual Basic Add-Ins
Remote Automation Connection Registry APIs
Remote Automation Limitation on 16-bit Applications
Restrictions on Creating Version Incompatible OLE Servers (ReadMe)
Returning an Error Value From a DLL
Unexpected Triggering of the Deactivate and LostFocus Events
Use of REGSVR and REGOCX
Version Compatibility Feature Does Not Work For Some OLE Servers

Component Manager (Enterprise Edition Only)
Administration of Component Catalogs
Component Manager Displays Hidden Coclasses and Interfaces



Controls and Other Objects (ReadMe)

Miscellaneous
Standard Controls
Custom Controls
Windows 95 Controls



Miscellaneous    (ReadMe)

Creating   Picture   and   Font   Objects  
Difference in Passing Controls Between Visual Basic 3.0 and Visual Basic 4.0
Visual Basic 4.0 Does Not Support Out-Of-Process OLE Controls



Standard Controls (ReadMe)

Appearance   Property Not Supported by   HScrollBar   and   VScrollBar   Controls  
Limitations on   TabIndex   Property  
No Click event on Right Mouse Button for   ListBox  
Scroll Bars on   TextBox   controls  



Custom Controls (ReadMe)

CommonDialog Control
Changes to   CommonDialog   Flags for Windows 95 and Windows NT  

DBCombo and DBList Controls
Area Parameter on Click and DblClick Events on   DBCombo   and   DBList   Controls  

DBGrid Control
Cols   property of the   DBGrid   Control  
DBGrid   Control Does Not Correctly Rebuild Columns  
DBGrid   Control Doesn't Repaint Border When Moved  
HeadForeColor   Property Applies To the   Column   Object  
Properties for the   DBGrid   Control  
RowLoaded Event Is Not Supported
Unbound Mode of the   DBGrid   Control  

OLE Container Control
OLE   Container Control: Pasting Objects From the Clipboard  
SaveToFile   vs.   SaveToOle1File  
Settings for the   Action   Property (MAPI Session Control)  
Width   and   Height   Property Values Change After Moving   OLE   Container control  

(Professional and Enterprise Edition-Only Controls)
Gauge Control
Gauge Control Picture Property Also Accepts .WMF Files
NoDrop MousePointer is Nonfunctional in 16-bit Gauge and Key State Controls

Graph Control
GRAPH.VBX Control
Graph Control   ExtraData   Property Example  
Unable to Access MAPI Functionality Under VB32.EXE

Masked Edit Control
Masked Edit Control: Mask Characters Incorrectly Listed in Custom Control Reference

Multimedia MCI Control
Multimedia Control   FileName   property  



Windows 95 Controls (ReadMe)

These controls are available only in the Professional and Enterprise Editions of Visual Basic 
4.0.

ImageList Control
ImageList   Control Accepts More Than One Size Image  
Picture   Property is Read-only for   ImageList   ListImages  

ListView Control
Error message 35604 - The first column in a   ListView   control must be left aligned  

RichText Control
The   RichTextBox   Control Includes a   RightMargin   property  

SSTab Control
Grouped   OptionButton   Controls on the   SSTab   Control  
OCX files Installed When Custom Control Not Selected for Installation
TabStrip   Control DblClick Event Not Supported  

StatusBar Control
StatusBar   Cannot Set   Left   Property of the   Panel   Object  
The   StatusBar   Control Has a New   Style   Value  

Toolbar Control
Constant Values in the Toolbar's   Value   Property (Custom Controls) Topic  
Help Button on Customize Toolbar Dialog is Inactive
Toolbar   Control: Button Objects with Placeholder Style Don't Wrap  
Toolbar   Control Example  

TreeView Control
CreateDragImage   Method Doesn't Display Text  
HitTest   Method Example has Faulty Code  
TreeView   Sorted Property Doesn't Sort Nodes Automatically  



Language (ReadMe)

Append Behavior Changes
Array Behavior Changes
Avoid Hiding and Showing a Modal Form in the Same Event
ByVal   and   ByRef   Keywords  
Coercion of Byte and String Types
Coercion of Hexadecimal Values
CUR, ICO, and ANI Files
Explanation of the Behavior of Null String Pointers in Visual Basic 4.0
Functions
NewEnum   Property Not Supported By   SelectedComponents   or   ControlTemplates     

Collection
Print   Method and the   AutoRedraw   Property  
Printing on Forms, Picture Boxes, and the Debug Window
Selecting Drag Icons
Statements
Unicode
With...End With   and the   Line  ,   Print  ,   Circle  , and   PSet   Methods  



Error Messages (ReadMe)

User-defined types and fixed-length strings not allowed as the type of a public member
The topic does not exist.    Contact your application vendor for an updated Help file.
Error message changes and additions



Functions (ReadMe)

Additional Information on VBA Registry Functions
Asc   Function  
Chr   Function  
FileAttr   Function on 32-bit Operating Systems  
InStr   Function  
Len   and   LenB   Functions Return with User-defined Types  
Shell   Function Does Not Launch Documents with Associated Applications  
Use Sleep API Instead of   DoEvents  
Useful Constants for   Chr  $ Function in Visual Basic for applications Type Library  



Statements (ReadMe)

"For ... Next Statement" counter can be an element of a UDT
Additional Information on the   End   Statement  
DeleteSetting   Statement Differences Between Win16 and Win32  
Functions as Arguments in   Print   Statements  
Let   and   Set   statements and   Property Let   and   Property Set   Procedures  
Public   Statement Cannot be Used in a Procedure  
ReDim   Statement as a Declaration  
Using   Get   and   Put   with Arrays  



Software Installation Information (ReadMe)

Welcome to Microsoft Visual Basic  the quickest and easiest way to create powerful 
applications for Microsoft Windows operating systems.    Visual Basic helps you to be more 
productive by providing appropriate tools for the different aspects of Microsoft Windows 
application development.
The two Help topics listed below provide details on installing Visual Basic 4.0.
Setting Up From Floppy Disks
Setting Up From Compact Disc



Setting Up From Floppy Disks (ReadMe)

To set up Visual Basic from floppy disks
1. Insert Disk 1 in drive A.
2. Use the appropriate command in your operating environment to run the setup program. 

SETUP.EXE installs the 32-bit version of Visual Basic.    The 32-bit version requires 
Microsoft Windows 95 or later, or Microsoft Windows NT 3.51 or later.    The 32-bit version will
compile 32-bit applications only.

SETUP16.EXE installs the 16-bit version of Visual Basic.    The 16-bit version requires 
Microsoft Windows 3.1 or later.    The 16-bit version can also be installed and run on Windows
95 and Windows NT 3.51.    The 16-bit version will compile 16-bit applications only.

3. Follow the setup instructions on the screen.



Setting Up From Compact Disc (ReadMe)

Setup Instructions
Contents of Your Compact Disc
Uninstall



Uninstall (ReadMe)

If you want to uninstall Visual Basic 4.0, run Setup again from your original source and then
follow instructions.



Setup Instructions (ReadMe)

Professional Edition
To set up the Professional Edition from compact disc
1. Insert the compact disc in the CD-ROM drive.
2. Use the appropriate command in your operating environment to run the setup program, 

which is available in the root directory on the compact disc.    The setup application 
offers three installation options.    You can do any of the following:

Install the 32-bit version of Visual Basic.    The 32-bit version of Visual Basic can be 
run only on 32-bit operating systems such as Microsoft NT 3.51 or higher, and Microsoft 
Windows 95.

Install the 16-bit version of Visual Basic.    The 16-bit version of Visual Basic can be 
used on 32-bit operating systems, as well as 16-bit environments like Windows 3.1 and 
Windows for Workgroups 3.11.

Install Microsoft Developer Network (MSDN).
You may choose to install the 16-bit and 32-bit versions of Visual Basic in a single 
directory, or you can install them in separate directories.    Installing them in the same 
directory allows you to save disk space by avoiding duplicating files used by both 
versions.    In either case you should install the 16-bit version first.

3. Follow the Setup instructions on the screen
If you choose to not install the Help files, the CD must be in the CD-ROM drive for Help and 
Books Online to work correctly.
If you run into problems during Setup, contact your product support provider.

Enterprise Edition
To set up the Enterprise Edition from compact disc
1. Insert the compact disc in the CD-ROM drive.
2. Use the appropriate command in your operating environment to run the setup program, 

which is available in the root directory on the compact disc.    The setup application 
offers four options.    You can do any of the following:

Install the 32-bit version of Visual Basic.    The 32-bit version of Visual Basic can be 
run only on 32-bit operating systems like Microsoft NT 3.51 or higher, and Microsoft Windows
95.

Install the 16-bit version of Visual Basic.    The 16-bit version of Visual Basic can be 
used on 32-bit operating systems, as well as 16-bit environments like Windows 3.1 and 
Windows for Workgroups 3.11.

Install Microsoft Visual SourceSafe 4.0.
Install MSDN.

You may choose to install the 16-bit and 32-bit versions of Visual Basic in a single 
directory, or you can install them in separate directories.    Installing them in the same 
directory allows you to save disk space by avoiding duplicating files used by both 
versions.

3. Follow the Setup instructions on the screen.
If you run into problems during Setup, contact your product support provider.



Contents of Your Compact Disc (ReadMe)

Root Directory
Contains SETUP.EXE, the master setup application file.

\VB Directory
Contains Visual Basic Books Online, and directories containing uncompressed, uninstalled 
copies of all of the files contained in your Visual Basic application.    These files may be 
useful if you have to call product support.    These files are not installed on your system.    
You can't run Visual Basic from this directory.

\MSDN Directory
Contains the Microsoft Developer Network (MSDN) Starter Kit.    The Microsoft Developer 
Network for Visual Basic Users provides technical information and development toolkits for 
all developers who write applications for Microsoft operating systems.    MSDN members 
receive a quarterly CD-ROM disk and a bimonthly newsletter.    The CD contains code 
samples, technical articles, development tools, and the Microsoft Knowledge Base.    Printed
material included in your Visual Basic package provides information on starting a 
subscription to MSDN.

\TOOLS Directory
Contains various tools and accessories.    These tools are intentionally not installed on your 
hard disk.    For more information, see the readme or Help file provided in each directory.
Directory Description
DATAEX32 Contains a tool that allows you to explore all of the data access options 

available for use with Visual Basic 4.0. 
IMAGEDIT Contains a tool that lets you create and edit bitmaps, cursors, and icons.
PSS Contains a number of analytical programs to help identify problems with 

Visual Basic, OLE, and your application before you call for technical support.  
PSS engineers will often refer to these tools while working with you on an 
issue.

RESOURCE Contains the Resource Compiler (RC), which compiles the resource-definition
file and the resource files (such as icon and wave files) into a binary 
resource (.RES) file.

SYSINFO Contains the 32-bit SysInfo control, which allows you to respond to certain 
system messages sent to all applications by the operating system.    Your 
application can then adapt to changes in the operating system if necessary.

VBCP Contains the Visual Basic Code Profiler, which is a Visual Basic add-in used to
determine what code is being executed in an application, how many times it 
gets executed, and how long it takes to execute.    It performs this analysis at
the function level or line level. 

\SRCSAFE Directory
Contains Microsoft Visual SourceSafe 4.0, an easy-to-use tool for team development of 
software, publications, manufacturing procedures, and any work that benefits from source 
control.    Not available with the Standard or Professional Edition.

\SETUP Directory
Contains supplementary setup applications.

SETUP.EXE installs the 32-bit version of Visual Basic.    The 32-bit version requires 
Microsoft Windows 95 or later, or Microsoft Windows NT 3.51 or later.    The 32-bit version 
compiles only 32-bit applications.

SETUP16.EXE installs the 16-bit version of Visual Basic.    The 16-bit version requires 
Microsoft Windows 3.1 or later.    The 16-bit version can also be installed and run on Windows
95 and Windows NT 3.51.    The 16-bit version compiles 16-bit applications only.



Using Disks with Distribution Media Format (DMF) (ReadMe)

With the exception of the Setup disk (Disk 1), your Microsoft Visual Basic disks use a new 
format called DMF (Distribution Media Format).    DMF increases the capacity of a 3.5-inch 
floppy disk, reducing the number of disks needed to install your application.
Because DMF is a new format, many existing utilities such as Norton Disk Doctor, Microsoft 
ScanDisk, MS-DOS DiskCopy, and Microsoft Windows Copy Disk do not support DMF.    You 
should not use disk utilities to examine a DMF formatted disk, as these utilities can corrupt 
the DMF disk.    MS-DOS DiskCopy or Microsoft Windows Copy Disk cannot be used to copy 
DMF disks.
Operating systems other than Windows 3.1 (or later), Windows NT 3.5 (or later), or 
Windows 95 may not have the correct files to support DMF.    For users with Windows NT 
3.51, if you updated FLOPPY.SYS or have installed Microsoft Windows NT Service Pack 3, you
should be able to install Microsoft Visual Basic.    If you did not install these files or are 
unsure, there are two things you can do to correct this:
1. Update your operating system.
2. Contact Microsoft Product Support Services or use CompuServe to obtain the correct 

system files.



Copying Files from DMF Disks (ReadMe)

Operating systems prior to Microsoft Windows 95 or Microsoft Windows NT 3.5 cannot read 
files directly from DMF diskettes.
If you need to copy the Microsoft Visual Basic disks onto a network server or other fixed 
disk, you may use the copy switch (/C) with the EXTRACT.EXE utility on Disk 1 to copy the 
Microsoft Visual Basic installation files to the target location.    For example, after creating a 
directory called C:\DISKS on your hard disk for the Microsoft Visual Basic files, copy all the 
files on Disk 1 to that directory.    You can use the standard MS-DOS Copy command with 
Disk 1 because it does not use DMF:
COPY A:\*.* C:\DISKS
Switch to drive A and type the following command to copy the rest of the disks to the 
directory C:\DISKS:
FOR %I IN (*.*) DO C:\DISKS\EXTRACT /C A:\%I C:\DISKS\%I
A cabinet (.CAB) file includes many files stored as a single file.    If for some reason you 
need only a single file that is contained in one of the cabinet files, you may search for it 
using the /D switch with EXTRACT.EXE.    Once you find the file, you can use EXTRACT.EXE 
again to copy the file to the desired location.    You can use the PACKING.LST file (located in 
the Visual Basic setup directory) to determine which cabinet files contain the Visual Basic 
files you want to extract.    You can also type EXTRACT /? to get help on the EXTRACT 
command options.
Here are some examples of how to use the EXTRACT command to find files.
To list all files in a cabinet file:
EXTRACT /D A:\cabinetfilename
To list all .EXE files in a cabinet file:
EXTRACT /D A:\ cabinetfilename *.EXE
Here are some examples of how to use EXTRACT to copy a single file out of a cabinet file.
To extract ANY.EXE to the current directory:
EXTRACT A:\cabinetfilename ANY.EXE
To extract ANY.EXE to C:\VB:
EXTRACT A:\cabinetfilename /L C:\VB ANY.EXE



Scroll Bars on TextBox Controls (ReadMe)

With the Multiline property set to True on a TextBox and the ScrollBars property set to 
anything except None (0), scroll bars will always appear on the TextBox.



File Sharing for OLE and Data Access (ReadMe)

If you are using applications that support OLE, you must run either SHARE.EXE or 
VSHARE.386.    VSHARE.386 eliminates the need for SHARE.EXE when you run Windows 3.1 
or Windows for Workgroups in 386 enhanced mode.    If you run Windows 3.1 in standard 
mode, you still need to run SHARE.EXE.    If you run applications that are not compatible 
with SHARE.EXE, and you run Windows 3.1 in 386 enhanced mode, you may be able to use 
VSHARE.386 instead of SHARE.EXE.    If you are running Windows for Workgroups 3.1 or 
3.11 in 386 enhanced mode, you are already using VSHARE.386.    If you are running 
Windows 3.1, follow this procedure to use VSHARE.386.
To use VSHARE.386
1. Make sure VSHARE.386 is in the Windows \SYSTEM subdirectory.
2. Using a text editor (such as MS-DOS Editor), edit your AUTOEXEC.BAT file and remove 

the command for SHARE.EXE.
3. Edit the [386Enh] section in your SYSTEM.INI file to add the following line:    

device=vshare.386



Array Behavior Changes (ReadMe)

Because arrays are reallocated differently in Visual Basic 4.0, some code that worked in 
earlier versions may no longer work.    Visual Basic now temporarily locks an array when 
any element of the array is passed by reference to another procedure.    This means that, 
during the lifetime of the procedure that receives the element by reference, the array 
cannot be resized.    The array is unlocked when there are no further references to array 
elements passed by reference.



Paradox Engine Configuration Utility (ReadMe)

In the Crystal Reports for Visual Basic Help file, the topic, "Paradox Engine Configuration 
Utility" refers to a file named PXENGCFG.EXE, which is used to configure the Paradox 
engine for a network.    This file is not included with Visual Basic because the Microsoft Jet 
database engine handles all connections to Paradox data.    For more information, search 
Help for accessing external databases.



Visual Basic 4.0 Does Not Support Out-of-Process OLE Controls 
(ReadMe)

An out-of-process OLE control is one running in a separate address space from the current 
instance of Visual Basic 4.0.    If you attempt to load a 16-bit out-of-process OLE control on a
32-bit system, or vice versa, you'll get a clear and appropriate error message. 
However, in the case of trying to load a 16-bit out-of-process OLE control on a 16-bit 
system, or a 32-bit out-of-process control on a 32-bit system, the error message may not be
totally informative.    Understand in this context that Visual Basic 4.0 does not support out-
of-process OLE controls.



Width and Height Property Values Change After Moving OLE 
Container Control (ReadMe)

When a user moves an OLE container control on a form, the Height and Width property 
values of the object may be slightly different after the move.    The parameters to 
OLE_ObjectMove() are pixel values converted to the current form's scaling mode.    The 
conversion from pixels to twips and back doesn't result in identical values.



With...End With and the Line, Print, Circle, and PSet Methods 
(ReadMe)

The Line, Print, Circle, and PSet methods cannot be used in a With...End With block.



Recordset Object Doesn't Support CreateDynaset Method (ReadMe)

The Data control in Visual Basic 4.0 creates a Recordset object, whereas the Data control
in Visual Basic 3.0 created a Dynaset object.    The CreateDynaset method does not exist 
on the Recordset object.    To verify this, follow this procedure.
1. Start Visual Basic; Form1 is created
2. Add a Data control (Data1) and a TextBox (Text1).
3. Set the following control properties in the Properties window:
Control Property Value
Data1 DatabaseName "BIBLIO.MDB"
Data1 RecordSource "Authors"
Data1 RecordsetType 1 - Dynaset
Text1 DataSource Data1
Text1 DataField "Author"
4. Add a CommandButton (Command1) to Form1.    Add the following code to the Click 

event of Command1:
Private Sub Command1_Click()

Dim ds As Dynaset
Set ds = Data1.Recordset.CreateDynaset()
ds.Close
Set ds = Nothing

 End Sub
5. Press F5 and click the command button; error 3251 generated.
To avoid the error, change this code to Data1.Recordset.OpenRecordset() instead of 
Data1.Recordset.CreateDynaset().



Changes to CommonDialog flags for Windows 95 and Windows NT 
(ReadMe)

The File Open/Save dialog box structure supports three new flags:
Flag Value Description
cdlOFNExplorer 0x00080000 Use the Explorer-like Open A File dialog box 

template.    Common dialogs that use this 
flag do not work under Windows NT using 
the Windows 95 shell.

cdlOFNNoDereferenceLinks 0x00100000 Do not dereference shell links (also known 
as shortcuts).    By default, choosing a shell 
link causes it to be dereferenced by the 
shell.

cdlOFNLongNames 0x00200000 Use long filenames.
The cdlOFNExplorer and cdlOFNNoDereferenceLinks flags work only under Windows 
95.    Multiselect common dialogs under Windows 95 using cdlOFNExplorer use null 
characters for delimiters, but under Windows NT or Win16, the multiselect uses spaces for 
delimiters (thus no support for long filenames). Of course when Windows NT gets the 
Windows 95 shell you will have to treat Windows NT and Windows 95 the same.

Multiselect Issues
Under both Windows NT and Windows 95 if you do not choose the 
cdlOFNAllowMultiselect flag, then both the cdlOFNExplorer and cdlOFNLongNames 
flags have no effect and are essentially the default.    Under Windows NT, you will get long 
filenames, and under Windows 95 you will get the new style dialog and long filenames.
If you use the cdlOFNAllowMultiselect flag by itself under both Windows NT and 
Windows 95, you will not have support for long filenames.    This is because the multiple 
filenames come back space delimited and long filenames could include spaces.    Until 
Windows NT gets the Windows 95 shell, you cannot avoid this behavior.    If you use 
cdlOFNAllowMultiselect, you cannot see long filenames. If you add the cdlOFNExplorer
flag under Windows 95, you will be able to both multiselect and see long filenames.    But 
the filenames come back null character delimited and not space delimited.    Thus, using 
cdlOFNAllowMultiselect with cdlOFNExplorer will require different parsing of the 
filename result under Windows 95 and Windows NT.



Errors loading Visual Basic 3.0 Binary Projects from a Network 
(ReadMe)

When loading a Visual Basic 3.0 project using a UNC pathname, you may get the following 
message: The basic code in <file name> was corrupt, and could not be loaded.
To safely load a Visual Basic 3.0 project from a network share, copy the files to a local 
directory and load the project from that location.



Mapping Untrapped Errors in OLE Automation Objects (ReadMe)

The text following Figure 21.4 in Chapter 21, "Handling Run-Time Errors" in the 
Programmer's Guide states, "Visual Basic 4.0 automatically maps untrapped errors arising 
in objects outside of Visual Basic as error code 440."    This is false.    If an error is raised or 
if you raise an error
in an external object, and it is untrapped, it will be raised in the procedure that called the 

external object.    It will not be mapped to error code 440.



Debugging Tips (ReadMe)

Before beginning any debugging session, you should open the Options dialog box 
(available from the Tools menu), select the Advanced tab, and set the Error Trapping option.   
The setting for these options is not saved with the project; Visual Basic will use the last 
setting entered, even if the setting was entered for another project.

The three Error Trapping options on the Advanced tab of the Options dialog box 
(available from the Tools menu) allow you to determine how errors are handled in the 
Visual Basic development environment.    If you run your application and you get thrown 
into break mode unexpectedly, you can easily reset this option.    During break mode, 
you can click the right mouse button to display a context menu that includes the 
following selections:
Cut
Copy
Paste
-----------------------------------------
Toggle Breakpoint
Step to Cursor
Instant Watch
Set Next Statement
-----------------------------------------
Break on All Errors
Break in Class Module
Break on Unhandled Errors
------------------------------------------
Procedure Definition
You can use the Break on All Errors, Break in Class Module, or Break on Unhandled Errors
menu item to reset the Error Trapping option.

CTRL+HOME and CTRL+END will take you to the top or bottom of the Immediate pane.



Use Sleep API Instead of DoEvents (ReadMe)

With the 32-bit version of Visual Basic, using the Sleep API function is more appropriate for 
'waiting' in code than using DoEvents.    The declare for this function is:
Declare Sub Sleep Lib "kernel32" Alias "Sleep" (ByVal dwMilliseconds _
As Long)
To call the Sleep function, you could use code like the following:
Call Sleep (1000)



Limitation on Number of Files on Project Load (ReadMe)

You can only open 384 files on project load.



New Icons (ReadMe)

In Appendix B , Icon Library in the Programmer's Guide, there are four message box icons 
listed in the 'Computers' section: MSGBOX01 through MSGBOX04.    These icons allow you 
to create more elaborate message boxes than those available with the standard MsgBox 
function.    The icons that Windows 95 displays using the MsgBox function are different 
from those displayed under Windows 3.1.    Both sets are included in the \ICONS\COMPUTER
directory. The new Windows 95 icons are:
W95MBX01.ICO
W95MBX02.ICO
W95MBX03.ICO
W95MBX04.ICO
Four additional icons that are not listed in Appendix B are included with Visual Basic 4.0:
Path Description
\FLAGS\FLGRSA.ICO Flag for the Republic of South Africa
\FLAGS\FLGBELG.ICO Flag for Belgium
\WRITING\NOTE10B.ICO Note (Italian)
\WRITING\NOTE10C.ICO Note (Japanese)



Difference in Passing Controls Between Visual Basic 3.0 and Visual 
Basic 4.0 (ReadMe)

If you are calling a Function or Sub procedure in a .DLL or .VBX that was written for Visual 
Basic 3.0, and the Declare statement for the Function or Sub has a parameter that is 
defined As Control, then the correct Visual Basic 4.0 parameter should have a ByVal 
preceding the parameter name.    This is because in Visual Basic 3.0 a parameter defined 
As Control incorrectly passed an hCtl (the handle to the control) rather than a pointer to 
the hCtl.    Because all other parameters passed by reference (they had no ByVal preceding
them) were passed as pointers to the parameters, the As Control parameters were an 
exception which has been corrected in Visual Basic 4.0.    For example, a DLL function such
as:
HWND FAR PASCAL GetControlHwnd(HCTL hCtl)
{

return VBGetControlHwnd(hCtl);
}

would have a Visual Basic 3.0 declaration of: 
Declare Function GetControlHwnd Lib libname.dll (hCtl As Control) _
As Integer
and should have a Visual Basic 4.0 declaration of:
Declare Function GetControlHwnd Lib libname.dll (ByVal hCtl As _
Control) As Integer
Visual Basic 4.0 resolves this problem in the vast majority of the cases, and can correctly 
identify the proper value to pass to Visual Basic APIs.    However, to make absolutely sure 
that the program using this .VBX or .DLL will be compatible with future releases of Visual 
Basic, you should follow the correct methodology in setting parameters.



Using Compile on Demand (ReadMe)

If you select the Background Compile or Compile on Demand option on the Advanced tab 
on the Options dialog box and then choose Start With Full Compile from the Run menu, 
Visual Basic overrides the check box settings on the Advanced tab and performs a full 
compile.
In Chapter 20, "Debugging," in the Programmer's Guide, the section with this title contains 
text recommending that you flush out hidden errors by turning Compile on Demand off and 
then running the application.    This may require you to reset Compile on Demand after 
running the application.    A better option may be to use CTRL+F5, Start after Full Compile 
(Run menu), because that will leave the setting of Compile On Demand alone.



Development Environment Tips (ReadMe)

CTRL+TAB and SHIFT+CTRL+TAB move focus between the windows in the Visual Basic 
4.0 development environment.

You can select multiple controls on a form and then set the value of common 
properties in the Properties window.    To select multiple controls, you can either press the left
mouse button and select each control by dragging, or press SHIFT while clicking each of the 
controls you want to include in the selection.    The Properties window then displays only 
properties that are common to all the controls you selected.    Values you enter in the 
Properties window apply to all the selected controls.    When you select a group of TextBox 
controls however, the Text property is not available.

Double-clicking the left margin of the Code window selects an entire procedure, 
pressing CTRL and clicking the left margin of the Code window selects all, and a single-
clicking selects a line.

CTRL+SHIFT+F2 takes the caret back to its previous position.    This is useful after using
SHIFT+F2 to examine a procedure.



DeleteSetting Statement Differences Between Win16 and Win32 
(ReadMe)
The DeleteSetting statement, which deletes initialization information, should operate the 
same on Win16 and Win32 operating systems (for instance, it should raise run-time errors 
in the same way).    There is one minor difference.    On Windows NT, this code runs without 
a generating a run-time error:
SaveSetting "foo", "sect", "key", "val"
DeleteSetting "foo", "sect", "key" ' Assume "key" is last key in "sect"
DeleteSetting "foo", "sect"
On Win16, the final DeleteSetting statement raises an Illegal Function Call error.
On Win16, DeleteSetting cannot tell the difference between an empty section (a section 
with no keys), and a section which is not present in the .INI file.    Deleting a key followed by
the whole section doesn't make a lot of sense.
To keep the .INI on Win16 consistent, DeleteSetting on Win16 will remove a section name 
when the last key in the section is deleted.    This makes it easier for the user to see if a 
section doesn't exist. 
Note that the DeleteSetting statement stores information differently on Win16 and Win32 
operating systems: On Win16, SaveSetting, GetSetting, GetAllSetting, and 
DeleteSetting operate on an .INI file; on Win32, these operate on the Windows Registry.



CUR, ICO, and ANI Files (ReadMe)

Visual Basic 4.0 does not support color cursor files (.CUR).    Color cursor files such as those 
shipped with Windows NT 3.51, will be displayed in black and white.    To display a color 
cursor, use a color icon file (.ICO).
You can use the MouseIcon property to load either cursor or icon files.    This provides your 
program with easy access to custom cursors of any size, with any desired hot spot location.
The 32-bit version of Visual Basic does not support loading of animated cursor (.ANI) files, 
even though they are supported by 32-bit Windows operating systems.



Multimedia Control FileName Property (ReadMe)

The Multimedia MCI control has a FileName property, which allows you to specify which 
file to play.    For example, to play a .WAV file, you could specify a particular file to play.    
However, to change the FileName property, you must close and reopen the Multimedia 
MCI control.
For example:
' Place a MCI control and a FileListBox on a form, and paste
' this code into the form.
Private Sub File1_Click()

' The code enumerates through the FileListBox's items.
' When the code finds a selected item, it closes MMControl1,
' resets the device type, resets the FileName property with
' the selected item, then reopens MMControl1.
Dim i As Integer
For i = 0 To File1.ListCount - 1

If File1.Selected(i) = True Then
MMControl1.Command = "close"
MMControl1.DeviceType = "WaveAudio"
MMControl1.FileName = "c:\windows\" & File1.List(i)
MMControl1.Command = "open"

End If
Next i

End Sub
Private Sub Form_Load()

' Set properties needed by MMControl1 to open.
With MMControl1

.Notify = False

.Wait = True

.Shareable = False

.DeviceType = "WaveAudio"
' Set the file to be opened before opening the MMControl.
.FileName = "C:\WINDOWS\chimes.WAV"
' Open the MCI WaveAudio device.
.Command = "Open"

End With
' Set parameters for the FileListBox.
File1.Path = "c:\windows"
File1.Pattern = "*.wav" ' Only display .WAV files.

End Sub
Private Sub Form_Unload(Cancel As Integer)

' Close the control to free resources.
MMControl1.Command = "close"

End Sub



Guide to Data Access Objects Changes (ReadMe)

Under "Functionality Supported by Some Servers" in Chapter 9, "Developing Client/Server 
Applications," the CVDate function is now the CDate function.



The RichTextBox Control Includes a RightMargin Property (ReadMe)

Returns or sets the right margin for the text in a RichTextBox control.
Syntax
object.RightMargin [= value]
The RightMargin property syntax has these parts:
Part Description
object An object expression that evaluates to a RichTextBox control.
value An Integer that determines the indent in twips from the right edge of the text 

to the right edge of the control.
Remarks
The RichTextBox control also uses the RightMargin property to determine how to word 
wrap.



Limitations on TabIndex Property (ReadMe)

The Menu, Timer, CommonDialog, Data, Image, Line, and Shape controls are not 
included in the tab order in Visual Basic.    To verify this, place a TextBox control on a form 
and then in order, a CommonDialog, Data, Image, Line, Shape, Timer, and second 
TextBox control.    Check the TabIndex properties of the two TextBox controls.    Notice 
they are 0 and 1. The other controls are not included in the tab order.



Using a Table Name When Addressing Fields in Recordset Objects 
(ReadMe)

In Visual Basic version 3.0, you could reference the fields in a Recordset using a variety of 
syntax.    For example, all of the following code used to reference the Title field of a 
Dynaset object created against the Titles table are valid:
Dim db As Database, ds As Dynaset
Set db = OpenDatabase("biblio.mdb")
Set ds = db.CreateDynaset("Select * from Titles")
Print ds(0)
Print ds!Title
Print ds("title")
Print ds.Fields("title").Value
Print ds("titles.title")
In Visual Basic 4.0, using the Table name in the string when the Dynaset, Snapshot, or 
dynaset-type or snapshot-type Recordset is generated from an SQL string is no longer 
valid.



SetupWizard Dependency File Notes for Microsoft Visual Basic 
(ReadMe)

The following topics describe the SetupWizard's SWDEPEND.INI file and provide information 
about which Visual Basic files can be freely distributed with your Visual Basic applications in
accordance with the other requirements in the license agreement.
1. SWDEPEND.INI
2. Syntax in SWDEPEND.INI
3. Third-Party Controls: Adding Dependency Information to SWDEPEND.INI
4. Other Redistributable Visual Basic Files



SWDEPEND.INI (ReadMe)

Depending on the operations your application performs and the custom controls it uses, 
you may need to distribute separate files containing the objects used by your application.    
These other files are called dependencies and are identified in the SWDEPEND.INI file 
(located in the \WINDOWS directory), which is a standard Windows .INI file that can be 
modified with a text editor.
SWDEPEND.INI lists the file dependencies for the controls (.OCX and .VBX), dynamic link 
libraries (DLLs), and references shipped with Visual Basic.    When a reference to a custom 
control (.OCX or .VBX), DLL, or .EXE file in your application's .VBP file is detected by the 
SetupWizard file (Step 5), the SWDEPEND.INI file will be consulted to determine which other
files should be distributed with your application.
SETUP.LST (required by SETUP.EXE) depends on information supplied in the SWDEPEND.INI 
file, and is created automatically by the SetupWizard.    SETUP.LST is a text file that lists all 
the files to be installed on your user's machine, including the disk on which they reside, 
where they will be installed, whether and how they are to be registered in the system 
registry, and so forth.    
Each section of the SWDEPEND.INI file will have one or more entries representing:

The individual files that your Visual Basic application depends on.
Other entire sections that Visual Basic depends on.
The destination path where the files associated with that dependency will be 

installed.
How the dependency is registered when it is installed.

Note      If Visual Basic version 3.0 was installed on your machine, relevant information from
the Visual Basic 3.0 SETUPWIZ.INI file will be copied to SWDEPEND.INI the first time you use
the Visual Basic 4.0 SetupWizard.



Syntax in SWDEPEND.INI (ReadMe)

Each section in SWDEPEND.INI uses the following syntax:
[DEPENDENCYNAME]
Dest=DESTINATIONDIRECTORY
UsesN=FILENAME.EXT
Register=REGISTERKEY
For example, the following is the section for [ODBC.DLL], so if your application uses ODBC, 
then you will need to distribute all of the files listed under [ODBC.DLL].
[ODBC.DLL]
Dest=$(WinSysPath)
Uses1=ODBC.DLL
Uses2=ODBCADM.EXE
Uses3=ODBCCURS.DLL
Uses4=ODBCINST.DLL
Uses5=CTL3DV2.DLL

[DEPENDENCYNAME]
DEPENDENCYNAME is the name of the custom control (.OCX or .VBX) or DLL file that is a 
dependency file, such as OLE2.DLL or SPIN16.OCX.    Each control should have a separate 
section for the 16-bit and 32-bit files that may be used. 
If a section does not use an actual filename as the DEPENDENCYNAME, Visual Basic will 
append "-32" to a DEPENDENCYNAME when it is called from a 32-bit version of Visual Basic 
(for instance, [SetupWiz-32] instead of [SetupWiz]).

Dest=DESTINATIONDIRECTORY
The optional DESTINATIONDIRECTORY argument specifies where the DEPENDENCYNAME 
file should be installed.    DESTINATIONDIRECTORY can take the following values:
Value Description
$(WinSysPath) Installs the file into the user's \WINDOWS\SYSTEM directory.
$(WinPath) Installs the file into the user's \WINDOWS directory.
$(AppPath) Installs the file into the application's root directory, which is 

specified by the user during setup.
c:\path Installs the file into the specified path (not recommended).
$(AppPath)\SAMPLES Installs the file into the \SAMPLES subdirectory, just below the 

application's root directory.
If no DESTINATIONDIRECTORY is supplied, the SetupWizard will determine the destination 
directory, based on the file's extension.    All .DLL, .OCX, and .VBX files will be installed into 
the \WINDOWS\SYSTEM directory, and all other files will be installed into the application's 
root directory.    
If no DESTINATIONDIRECTORY is supplied for a DEPENDENCYNAME, but that dependency is 
a file used by another dependency section and that second dependency section contains 
DESTINATIONDIRECTORY information, then the first dependency will be installed to the 
location specified under the second dependency.    For example, although no 
DESTINATIONDIRECTORY is specified under the section for DEPEND1.DLL, DEPEND1.DLL will
be copied to the \WINDOWS\SYSTEM directory, as specified under DEPEND2.DLL:
[DEPEND1.DLL]
Uses1=SUPPORT.DLL
Register=$(DLLSelfRegister)
[DEPEND2.DLL]
Uses1=SUPPRT2.EXE
Uses2=DEPEND1.DLL



Dest=$(WinSysPath)
Register=$(DLLSelfRegister)

Note      Filenames ending with ":1" will be installed in the \WINDOWS\SYSTEM directory, to 
be backward compatible with the Visual Basic 3.0 SETUPWIZ.INI file.

UsesN=FILENAME.EXT
In the UsesN syntax, N starts at 1 and is incremented for each dependent file or group.    
FILENAME.EXT lists files, and the other sections that Visual Basic 4.0 depends on for the 
DEPENDENCYNAME dependency.    Filenames ending with ":0" will be copied to disks but not
compressed, and installed "as is" on your user's machine.

Register=REGISTERKEY
REGISTERKEY indicates how an object can get registered.    REGISTERKEY can take the 
following values:
Value Description
$(DLLSelfRegister) The component is a DLL file that includes self-registering information 

that should be called during the installation.    This also applies to OLE
controls (.OCX).

$(EXESelfRegister) The component is an .EXE that can be invoked with the /REGSERVER
command-line argument during installation.    This applies to OLE 
servers created with Visual Basic.

FILENAME.REG The component uses a .REG file to get registered, and REGEDIT.EXE 
should be called with FILENAME.REG.



Third-Party Controls: Adding Dependency Information to 
SWDEPEND.INI (ReadMe)

If you are developing and distributing your own custom controls, you will need to add 
dependency information to the SWDEPEND.INI file.    Also, if you are using third-party 
custom controls, you may need to add dependency information to the SWDEPEND.INI file 
for those custom controls (if the installation program for those controls does not do this for 
you).
The    following code snippet (which you could add to your setup program) adds a section 
named "OCXNAME.OCX" (the name of the control) and creates the line 
"Uses1=SUPPORT.DLL" (SUPPORT.DLL might be the name of a support DLL for the .OCX).    
The second entry specifies the line "Register=$(DLLSelfRegister)" because .OCX controls 
typically contain a DLLSelfRegister function.
fOk = WritePrivateProfileString("OCXNAME.OCX", "Uses1", "SUPPORT.DLL",
"SWDEPEND.INI");
fOk = WritePrivateProfileString("OCXNAME.OCX", "Register", 
"$(DLLSelfRegister)", "SWDEPEND.INI");
The following information would then be added to the SWDEPEND.INI file:
[OCXNAME.OCX]
Uses1=SUPPORT.DLL
Register=$(DLLSelfRegister)



Other Redistributable Visual Basic Files (ReadMe)

The files in the following directories can be freely distributed with Visual Basic applications:
\BITMAPS
\ICONS
\METAFILE
\SAMPLES
\ODBC or \ODBC32 (Professional Edition only)
Also, the following files included with Visual Basic 4.0, Enterprise Edition are distributable 
royalty free according to the terms of the Microsoft Visual Basic 4.0 license agreement.
Distributable with 16-bit client projects
AUTPRX16.DLL
AUTPRX.DLL
SECURITY.DLL
RPCRT1.DLL
RPC16C1.DLL
RPC16C5.DLL
RPC16C6.DLL
RPC16DG6.DLL
RPC16C4.DLL
RPC16DG3.DLL
RPC16C3.DLL
RPCREG.DAT
Distributable with 32-bit client projects
AUTPRX32.DLL
AUTMGR32.EXE
Distributable with 32-bit server projects
AUTREG32.DLL
RACMGR32.EXE
AUTMGR32.EXE
AUTPRX32.DLL



Print Method and the AutoRedraw Property (ReadMe)

If you have AutoRedraw set to False, the Print method prints on top of graphical controls
such as the Image and Shape controls.



Printing on Forms, Picture Boxes, and the Debug window (ReadMe)

If you use a comma to separate items in the outputlist, Visual Basic separates these items 
with a tab when printing. For example:
Debug.Print "hello", "hello"
will print:
hello hello



Testing for Multiple Buttons (ReadMe)

When the code example on page 341 under "Testing for Multiple Buttons'" in Chapter 12, 
"Responding to Mouse Events," of the Programmer's Guide  is run and both buttons are 
pressed, all three messages in the section's MouseMove procedure will be displayed.



Selecting Drag Icons (ReadMe)

When you set the DragIcon property at run time by assigning the Picture property of one 
control to the DragIcon property of another control, the Picture property must contain 
an .ICO file, not a .BMP file.



The StatusBar Control Has a New Style Value (ReadMe)

The StatusBar control has a new Style property value of 7 (Kana lock key).    This value 
displays the letters "KANA" in bold when scroll lock is enabled, and dimmed when disabled.
StatusBar is a Windows 95 control, and is not available in the Standard Edition of Visual 
Basic.



Unexpected Triggering of the Deactivate and LostFocus Events 
(ReadMe)

If an .EXE file built by Visual Basic displays a dialog box created by a .DLL also built in 
Visual Basic, the .EXE file's form will get Deactivate and LostFocus events.    This may be 
unexpected, because you should not get the Deactivate event:

If the server is an out-of-process server.
If the server isn't written in Visual Basic.
In the development environment when calling a DLL built in Visual Basic.



Adding Remote Server Support Files in Setup (ReadMe)

The check box in Step 6 of the SetupWizard for determining whether or not to add remote 
server support files will add not only AUTMGR32.DLL and AUTMGR32.EXE to the distribution
files, but also RACMGR32.EXE, GAUGE32.OCX, TABCTL32.OCX, RACREG32.DLL, and 
ODKOB32.DLL.
This clarifies what is stated just before Figure 30.8 in the Chapter 30, "Distributing Your 
Applications," of the Programmer's Guide.



Some Differences Between Windows 95, Windows NT and Win16 
(ReadMe)

Context menus should be triggered under the MouseUp event on Windows 95 and 
should always use the vbPopupMenuRightButton flag to act like Windows 95 context 
menus.    Under Windows NT and Win16 they should be triggered on the MouseDown event.   
When Windows NT gets the Windows 95 shell, you must treat Windows NT and Windows 95 
the same.

Windows 95 common controls are not available on 16-bit versions of Visual Basic.
OLE server options are not identical between 16-bit and 32-bit versions of Visual 

Basic.



Avoid Hiding and Showing a Modal Form in the Same Event 
(ReadMe)

You should avoid hiding and showing a modal form in the same event for reasons described
here.    The results you encounter either an Out of stack space error or no event 
generation
are not what you would expect, but it is by design.
The problem is related to a low stack space condition, though you do not actually run out of
stack space.    The reason the low stack space condition occurs is due to a limitation in how 
Visual Basic handles the showing and hiding of modal forms within the same event.    Before
an event is called, Visual Basic sets a status flag of the modal state of the active form.    
Visual Basic doesn't reset this flag until the event has completed.    So if you hide the active
(modal) form within an event, Visual Basic will still treat the form as modal even though the
act of hiding it should make it non-modal.    
When you hide a form, you would expect the code immediately after the FormX.Show 1    
statement to be executed, but this does not happen.    Visual Basic executes the remaining 
code in the event, then after the event is completed, checks the modal state of the form 
and then executes the code following the FormX.Show 1.    It will execute the code only if no
other modal forms are showing.    Below is a code sample assuming you have two forms, 
Form1 and Form2, in your project.
' Code for Form1.
Private Sub Form_Click ()

Form2.Show 1
Debug.Print "Form2 is non-modal"

End Sub
' Code for Form2.
Private Sub Form_Click ()

Debug.Print "Hiding form2"
Form2.Hide
Debug.Print "Form2 is hidden"

End Sub
Run the above code, click Form1 and then click Form2.    In the Debug window you will see:
Hiding form2
Form2 is hidden
<The Form_Click event of Form2 completes>
Form2 is non-modal
<The Form_Click event of Form1 completes>
This scenario demonstrates that Visual Basic will execute the remaining code in Form_Click 
of Form2 before executing the code after the Form2.Show 1 statement.    If indeed the form 
was considered non-modal immediately after the Form2.Hide statement, you would expect 
to see:
Hiding form2
Form2 is non-modal
<The Form_Click event of Form1 completes>
Form2 is hidden
<The Form_Click event of Form2 completes>
In this case, Visual Basic will always show the next modal form before it considers the 
current form to be non-modal.    Whenever you click the command button, a modal form is 
always showing, therefore Visual Basic has no opportunity to complete the event where the
form was shown modally.    Each click adds another call to an event that cannot complete 
and you end up with recursive calls to each event.
To work around this behavior, you need to separate the FormX.Hide for the current form 
and the FormX.Show 1 for the new form into separate events.    For example, you can hide 



the current form in the Form_Click event (as your already doing), enable a timer, and then 
show the new modal form from within the Timer event.    Using this scheme leads to the 
following events:
1. The current form is hidden.
2. The timer is enabled for 1 millisecond.
3. The Click event terminates.    Visual Basic now recognizes the form is no longer modal.
4. The code after FormX.Show 1 for the current form completes, thus the event where the 

form was shown completes, avoiding recursion.
5. The Timer event is triggered.
6. The new form is shown modally.
7. The timer is disabled to avoid additional events.



OLE Container Control: Pasting Objects from the Clipboard (ReadMe)

Applications that provide objects behave differently when an object is deleted.    When you 
delete an OLE object (using the Delete method), the objects application may or may not 
close.    If the application does close, any objects on the Clipboard associated with that 
application may also be closed.    Because of this, you may not be able to cut an object 
(copy, then delete), because deleting the object may also cause the data on the Clipboard 
to be deleted.
Another instance of this behavior is when you try to copy an object, and then paste the 
object back onto itself.    This action may cause an error, because in order to paste over an 
existing object, the existing object is first deleted.    If the application associated with the 
object closes, and subsequently deletes any objects it has on the Clipboard, the Clipboard 
no longer contains an object to paste.



Height and Width Range for Grid Cells on the Form (ReadMe)

The range for both height and width of grid cells on the form at design time is 24 to 1188 
twips.
This is a correction to information in "Environment Options" in Chapter 4, "Managing 
Projects," of the Programmer's Guide, and to the Help topic 'Environment Options Tab.'



Use of REGSVR and REGOCX (ReadMe)

REGSVR.EXE and REGSVR32.EXE
You can use the REGSVR.EXE and REGSVR32.EXE utilities to manually register and 
unregister OLE servers, OLE DLLs, and OLE controls (.OCX).    REGSVR.EXE and 
REGSVR32.EXE are available in the \TOOLS directory.

Syntax
REGSVR[32] [/u] filename
The REGSVR[32] syntax has these parts:
Part Description
/u Unregisters an OLE server, OLE DLL, or an OLE control.
filename The name of the file you want to register or unregister.

Remarks
The utility will display either a success or failure dialog box upon completion.

REGOCX16.EXE and REGOCX32.EXE
You can use the REGOCX16.EXE and REGOCX32.EXE utilities to manually register and 
unregister OLE controls.

Syntax
REGOCX[16|32] [/u] filename
The REGOCX[16|32] syntax has these parts:
Part Description
/u Unregisters an OLE control.
filename The name of the file you want to register or unregister.

Remarks
The utility does not return success or failure upon completion.    To determine if the 
operation succeeded, use REGSVR[32].EXE, which does return a result.    REGOCX16.EXE 
and REGOCX32.EXE are available in the \TOOLS directory.



Creating Picture and Font Objects (ReadMe)

If you set a reference to Standard OLE Types using the References dialog box, you can use 
the StdFont and StdPicture classes to create your own font types.    If you view the Object 
Browser, you will notice that there are StdFont, StdPicture, Font, and Picture classes.    The 
Font and Picture classes are derived from the StdFont and StdPicture base classes and are 
supported by all controls. 
You can use the following syntax:
Dim MyFont As Font
But, you cannot use:
Dim MyFont As New Font
Instead, to create your own font or picture types, use code like the following:
Dim MyFont As New StdFont
With MyFont

.Bold = True

.Name = "Arial"
End With
Set Text1.Font = MyFont



Returning an Error Value from a DLL (ReadMe)

To return an error value from a dynamic link library (DLL) procedure, the C language 
prototype must be coded so that the return value is an HRESULT.    Refer to the Microsoft 
Press OLE 2 Programmers Reference, Volume 2 for more information on how to do this.



Functions as Arguments in Print Statements (ReadMe)

Visual Basic hoists function calls when they are specified as in an argument expression for 
a Print statement.    Visual Basic first evaluates all functions that are arguments of a Print 
statement, and then prints the resulting argument return values.    For example, the 
following code would display different values in the Debug window for Visual Basic 3.0 and 
Visual Basic 4.0:
Function F(N)

N = N + 1
F = N

End Function
Sub Test ()

 N = 3
Debug.Print N, F (N), N

End Sub
Visual Basic 3.0 will print the following in the Debug window:
3    4    4
Visual Basic 4.0 will print the following in the Debug window:
4    4    4



GRAPH.VBX Control (ReadMe)

Some of the properties of the Visual Basic 3.0 GRAPH.VBX control will not be saved properly
in Visual Basic 4.0, and this may result in loss of data.    If you are using the Graph control 
extensively, you should upgrade to the GRAPH16.OCX or GRAPH32.OCX control.



Sample Code for Font dialog box (ReadMe)

In the section, "Using the Font Dialog Box" in Chapter 11, "Dialogs," of the Programmer's 
Guide, the sample code on one line should be:
Text1.Font.Strikethru = CMDialog1.FontStrikethru
and not:
Text1.FontStrikethru = CMDialog1.FontStrikethru



Append Behavior Changes (ReadMe)

In earlier versions of Visual Basic, when a file is opened for Append, Visual Basic sets the 
next write position to the position of the first of any CTRL+Z characters (ASCII 26) in the file.
Visual Basic now sets the write position after the last character in the file, whether or not it 
contains embedded CTRL+Z characters.



DBEngine IniPath Now Uses Registry Entry (ReadMe)

The DBEngine.IniPath property on 32-bit systems now uses a Windows Registry entry, not
an .INI file.    This is an update to the Help topics 'Customizing Data Access INI Settings' and 
'Managing Connections to ODBC Data Sources.'
For example, to store an applications setting, you can use the following code:
SaveSettting "AppName", "Engines\Jet", "System\DB", "C:\DATA\SYSTEM.MDA"
To retrieve an application setting, you can use the following code:
DBEngine.IniPath = "HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
appname"



Additional information on the End Statement (ReadMe)

The End Statement topic states, "End Terminates execution.    Never required by itself but 
may be placed anywhere in a procedure to close files opened with the Open statement and
to clear variables."
Understand that the End statement stops execution abruptly, without invoking the Unload, 
QueryUnload, or Terminate event.    The End statement terminates execution immediately, 
without executing any further Visual Basic code.    Code you have placed in the Unload, 
QueryUnload, and Terminate events of forms and class modules will not be executed.    
Objects created from class modules will be destroyed, files opened using the Open 
statement will be closed, and memory used by your program will be freed.    Object 
references held by other programs will be invalidated. 
The End statement provides a way to force your program to halt.    For normal termination 
of a Visual Basic program, it is recommended that you unload all forms.    Your program will 
then close as soon as there are no other programs holding references to objects created 
from your public class modules, and no code executing.
The Ending Execution topic states, "To end execution, choose End from the Run menu, or 
click the End button on the toolbar.    You can also use the End statement in code."
Understand in addition that all of the above terminate execution immediately, without 
executing code you have place in the Unload, QueryUnload, and Terminate events of forms 
and class modules.    Search Visual Basic Help for End statement for more information.



SetupWizard Macros Listing (ReadMe)

In Step 7 of the SetupWizard, a File Details Destination Directory drop-down combo box lists
available macros.    The list is incomplete.    The following are macros that are supported but
do not appear in the drop-down list box:

$(CommonFiles)
$(WinSysPathSysFile)
$(MsAppsPath)
$(ProgramFiles)

$(CommonFiles) is documented, but it is not recommended for use without a derived 
subdirectory.
$(ProgramFiles) is used for the default application directory (which the user can then 
modify).



"Communication Link Failure" Error (ReadMe)

If you run Visual Basic 3.0 applications after installing Visual Basic 4.0, you may receive a 
Communication Link Failure error when executing queries with Microsoft Jet against a 
Microsoft or Sybase SQL Server.    You can retry the operation with asynchronous execution 
disabled.    To do this, add the following entry to your VB.INI file at design time.    Also, at run
time, add this to the appname.INI file indicated by the IniPath property:
[Debug]
RmtTrace=16
Visual Basic will continue to run synchronously until this line is removed from VB.INI.



No Click Event on Right Mouse Button for ListBox (ReadMe)

The Click event Help topic states:

"Occurs when the user presses and then releases a mouse button over an object.    It can 
also occur when the value of a control is changed.
For a Form object, this event occurs when the user clicks either a blank area or a disabled 
control.    For a control, this event occurs when the user:
Clicks a control with the left or right mouse button.    With a CheckBox, CommandButton,
or OptionButton control, the Click event occurs only when the user clicks the left mouse 
button."

This list of controls should also include the ListBox control. A right mouse button click will 
not invoke a Click event on a ListBox.



ImageList Control Accepts More Than One Size Image (ReadMe)

Images of many different sizes can be added to an ImageList control. It stretches the new 
images as necessary.    The resolution of the images is determined by either of the 
following:

The setting of ImageWidth and ImageHeight properties before any images are 
added.

The dimensions of the first image added.
For example, if the first image added is a 16 x 16 icon, and then a 32 x 32 icon is added, 
they will both be displayed as 16 x 16 images.



Add ListBox to Objects in PG Chapter 7 Example (ReadMe)

The table of objects and settings for the example following the heading "Public Collection 
Example: The House of Straw" is missing an entry for the list box.    This is in Chapter 7, 
"Introduction to Objects," of the Programmer's Guide.
Object Property Value
List box Name lstEmployees



Area Parameter on Click and DblClick Events on DBCombo and 
DBList Controls (ReadMe)

The DBCombo and DBList controls have a parameter named area in their Click and 
DblClick events.

Syntax
Private Sub DBCombo_Click (area As Integer)
Private Sub DBList_Click (area As Integer)
Private Sub DBCombo_DblClick (area As Integer)
Private Sub DBList_DblClick (area As Integer)
The area argument identifies what area the click is made on.    If you need to test for the 
value of the area argument, you can use constants listed in the Microsoft Data Bound List 
Controls (MSDBCtls) object library in the Object Browser.
Constant Value Description
dbcAreaButton 0 Button area
dbcAreaEdit 1 Edit area
dbcAreaList 2 List area



Explanation of the Behavior of Null String Pointers in Visual Basic 
4.0 (ReadMe)

Visual Basic 4.0 recognizes two very different kinds of strings that look the same, but act 
different.    One is a Null pointer string.    The other is an empty string.    Here's how you 
might code them in a public module:
Public Const sEmpty = ""
Public sNull As String
If you look at these two strings in the Watch pane, they look exactly the same (they are 
both displayed as ""), and you can use them in almost the same contexts.    However, 
internally they are very different.
Internally, sEmpty is a pointer to an empty string. It is a valid pointer to some memory 
location. In C this would be coded as:
const char sEmpty[] = "";
Whereas internally, sNull is a Null pointer.    This does not point to any memory location 
and has a value of zero. In C this would be coded as:
const char *sNull = NULL;
All Basic variables are initialized to 0 until initialized.    In previous versions of Visual Basic, 
uninitialized variable-length strings were automatically initialized to an empty string (""). 
Hence, for compatibility with previous versions, string variables must be initialized to 
empty strings.    But in Visual Basic 4.0, strings are in the BSTR format.    In the BSTR format,
a null pointer is defined to behave exactly the same as an empty string.    So, Visual Basic 
4.0 can just leave the initial zero value of uninitialized strings and get the same behavior as
for empty strings. This means that sNull can now be passed to any Windows API function 
that takes a Null pointer. This is something that was not possible in previous versions of 
Visual Basic.    For example, it can be passed to FindWindow, which gets the handle of a 
window, given either its class name or its title, or both. However, sNull must be passed 
ByVal for this to work.
In general, for FindWindow (or any other Windows API) to work, the Declare statement 
must be written to pass the string ByVal As String or ByVal As Any.    If they are passed 
by reference, a pointer to a BSTR would then be passed, which is nothing but a pointer to a 
pointer to char.    This will not work because Windows APIs expect strings that are pointers 
to char.
In Visual Basic 4.0, sNull might also be expected to be equivalent to:
Public Const sNull As String = 0&
However, Visual Basic does automatic numeric conversion on this and converts it to "0", 
which is neither an empty string nor a null string pointer.

Step-by-Step Example
1. Start a new project in Visual Basic.    Form1 is created by default.
2. Add the following code to the general Declarations section of Form1:

Const sEmpty = ""
Dim sNull As String
Private Declare Function FindWindow Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName As Any, ByVal _
lpWindowName As Any) As Long

3. In the Form_Click event for Form1, add the following code:
Shell "Calc.exe", 1
DoEvents
x& = FindWindow(sNull, "Calculator")
' x& = FindWindow(sEmpty, "Calculator")
Debug.Print x&



4. Press F5 to run the program.    Click Form1 and view the Debug window. A nonzero value 
will be printed.    This is the handle of the Calculator programs Window. If the line:
x& = FindWindow(sNull, "Calculator")
is commented and the line:
' x& = FindWindow(sEmpty, "Calculator")
is uncommented and then the program is run again, a value of 0 will be printed in the 
Debug window, indicating that FindWindow failed.    This happens because sEmpty is not 
a Null string pointer.



Difference in Behavior of Error Message 'Data Has Changed' 
(ReadMe)

There is a difference in the behavior between Jet 1.1 and Jet 2.0-3.0.    This difference is in 
how it processes the Data Has Changed error message.    In Jet 1.1, the error was triggered 
by default to warn users that data had changed in their tables.    In Jet 2.0-3.0, this error 
does not get triggered.    To cause the database engine to trigger the error message, you 
need to set the Options property for the Recordset to dbSeeChanges (512).
To change the Options property on a Data control to the proper value there are two 
methods you can use:

In the design environment, make sure the Data control is the selected item on your 
form and go to the Properties window. Set the Options property to 512.

In the run-time environment, use the following line of code to set the Options 
property of a Data control named data1.

data1.Options = dbSeeChanges
To create a Recordset with the Options property set to dbSeeChanges, you can use the 
following code segment:
Dim db As Database
Dim rs As Recordset
Set db = DBEngine.WorkSpaces(0).OpenDatabase("biblio.mdb")
Set rs = db.OpenRecordset("authors", dbOpenDynaset, dbSeeChanges)
After the Options property of the Recordset is set, you can trigger the error after the 
following sequence of events.
1. Two programs have the same record open in an edit mode.
2. Both programs make changes to the record.
3. One program saves its changes.
4. When the second program attempts to save its changes, the error message is triggered.



Asc Function (ReadMe)

In addition to the Asc function and the AscB function described in the Asc Function Help 
topic, the AscW function is provided for use with 32-bit Windows operating systems.    In 
32-bit Windows, AscW accepts a character and returns the corresponding character code 
that is native to the operating system.    In 16-bit Windows, AscW behaves exactly the 
same as the Asc function; in 32-bit Windows, it returns a Unicode character code.



Chr Function (ReadMe)

In addition to the Chr function and the ChrB function described in the Chr Function Help 
topic, the ChrW function is provided for use with 32-bit Windows operating systems.    In 
32-bit Windows, ChrW accepts a character code and returns the corresponding character 
that is native to the operating system.    In 16-bit Windows, ChrW behaves exactly the 
same as the Chr function; in 32-bit Windows, it returns a Unicode character.



Len and LenB Functions Return with User-Defined Types (ReadMe)

The Len function returns the size of a user-defined type as it will be when written to a file.   
By contrast, LenB returns the in-memory size of a user-defined type, including any padding
between elements.



InStr Function (ReadMe)

The InStr function does not use named arguments as shown in the syntax picture of the 
Instr function Help topic.    It uses conventional, position-dependent arguments in the order
shown in the syntax picture.



Unicode (ReadMe)

Unicode is a character standard developed by the International Standards Organization 
(ISO) to compensate for the 256-character limitation of the ANSI and Extended ASCII 
character standards.    While the ANSI and Extended ASCII standards both use 8-bit (1 byte) 
character codes that limit the number of unique characters to 256, Unicode uses a 16-bit 
(2-byte) coding scheme that allows for 65,536 distinct character spaces, with 
approximately 34,000 currently mapped characters.    This accommodates all the characters
and alphabets used in the world today, including several antiquated languages such as 
Sanskrit and Egyptian hieroglyphs.    Unicode also includes representations for punctuation 
marks, mathematical symbols, and dingbats, with substantial room for future expansion.    
The complete standard is documented in The Unicode Standard, Worldwide Character 
Encoding by the Unicode Consortium Staff ( 2 vols., Addison-Wesley).



Using Get and Put with Arrays (ReadMe)

Earlier versions of Visual Basic did not permit the use of arrays in Get and Put statements. 
This limitation has been removed.    If a variable is permitted in a Get or Put statement, an 
array of that type is also permitted.



Illegal Names in Classes (ReadMe)

Using certain names in Visual Basic is illegal because they conflict with OLE symbols.    
These names include:

QueryInterface
AddRef
Release
GetTypeInfoCount
GetTypeInfo
GetIDsOfNames
Invoke

For example, using these names as the name of a procedure causes the following error: 
Member already exists in this form.



Error Message Changes and Additions (ReadMe)

The following error messages have been changed:
User-defined types, private classes, and form modules not allowed as the type of
a public member of a public class
This error message now reads:
User-defined types and fixed-length strings not allowed as the type of a public member of a
class or form; private classes and form modules not allowed as the type of a public member
of a public class.
Bad DLL calling convention (Error 49)
In 32-bit Windows, this error occurs if you use any calling convention other than StdCall.

Bad File Name or Number (Error 52)
The information is correct, but applies only to MS-DOS-based systems (Microsoft Windows versions 
through 3.11 and Windows for Workgroups).    File specification rules in Windows 95 and Windows NT 
are much more liberal.    For example, a filename can be 255 characters and can include almost any 
characters, including blank spaces.    Some restrictions are still imposed by the operating system.    For 
example, in Windows 95 this error is caused by specifying a filename beginning with a period, double 
slash or double backslash.    See you system documentation for more details on file naming.

The following error messages have been added:
An unrecognized error occurred during compilation
An error code was returned, but no detailed information is available for the error.
Functionality not supported in DLL
Some Visual Basic for applications statements and functions cannot appear in a dynamic-link library 
(DLL).    For example, a Stop statement cannot be used in a DLL.

This edit requires a Reset
Generally, Visual Basic for applications permits you to edit suspended code, then continue running the 
code.    But some edits, such as changes to declarations of static variables, preclude continuation of 
code execution.    In these cases, Visual Basic for applications must reset all variables and begin code 
execution from the beginning.



Useful Constants for Chr$ Function in Visual Basic for applications 
Type Library (ReadMe)

The VBA type library now contains constants for the following: 
Carriage-return/linefeed (vbCrLf = Chr$(13)+Chr$(10))
Null character (vbNullChar = Chr$(0))
Carriage return (vbCr = Chr$(13))
Linefeed (vbLf = Chr$(10))
Backspace (vbBack = Chr$(8))
Tab (vbTab = Chr$(9))
Vertical tab (vbVerticalTab = Chr$(11))
Form feed (vbFormFeed = Chr$(12)

You can use any of these constants in code rather than making the equivalent Chr$ 
function call. However, only those for the carriage return, linefeed, tab and backspace are 
meaningful in Microsoft Windows.



Microsoft Access Version Number (ReadMe)

Occasionally Microsoft Access is referred to as Version 3.0.    This should be Version 7.0, 
which is also known as Microsoft Access for Windows 95.



ReDim Statement as a Declaration (ReadMe)

The ReDim statement acts as a declarative statement if the variable it declares does not 
exist at module- or procedure-level.    If another variable with the same name is created 
later, even if in a wider scope, ReDim will refer to the later variable and will not necessarily
cause a compilation error, even if Option Explicit is in effect.    To avoid such conflicts, 
ReDim should not be used as a declarative statement, but simply for redimensioning 
arrays.



Coercion of Byte and String Types (ReadMe)

You can assign strings to resizable arrays of bytes.    An array of bytes can also be assigned 
to a variable-length string.    This coercion also occurs in passing arguments to ByVal 
parameters.    Be careful with this however, because it can be expensive because of the 
necessity to create temporary variables and arrays during the call.    Similarly, be aware 
that the number of bytes in a string varies among platforms.    On Unicode platforms the 
same string contains twice as many bytes as it does on a non-Unicode platform.



FileAttr Function on 32-bit Operating Systems (ReadMe)

On 32-bit operating systems, FileAttr can return the file mode, but causes an error if you 
specify the operating system file handle as the return.    Therefore, the second argument 
can only be 1 with 32-bit operating systems.



Additional Information on VBA Registry Functions (ReadMe)

Each of these functions (DeleteSetting, GetSetting, GetAllSettings, SaveSetting) 
takes some combination of an appName, section, key, and value.    Using these names as 
an example, on 16-bit Windows, the file appName.INI would exist in the Windows directory 
with the entries:
[section]
key=value
On 32-bit Windows, the registry entry HKEY_CURRENT_USER\Software\VB and VBA Program 
Settings\appName\section would contain an entry:    "key: REG_SZ: value".

Limitations
appName on Win16 must be a file pathname (<255 bytes, MAX_PATH).    You may leave off 
the path, and the Windows directory is the default.    Also, the ".INI" extension may be left 
off; it is assumed if not present.
"Software\VB and VBA Program Settings\" + appName + section must be less than 260 
characters on Win32 (260 = MAX_PATH).
On Win16, the entire .INI file is cached by the operating system in a 64K segment, so the 
file cannot be bigger than 64K.
On Win16, section, key and value are limited to 64K strings.    However, in practice having a
section or key over 32K has caused variable behavior, so it is recommended    to keep them 
less than 32K.    You may have problems replacing a value where the length of the old value
+ length of the new value is greater than 64K.
On Win32, key and value have no known size issues.
On Win32, entries of types other than "REG_SZ" are not recognized.
On Win16 DBCS, there are no known problems with DBCS characters in .INI files, although 
Win16 documentation specifically recommends against this.    A user may not be able to 
read an .INI file containing DBCS characters using "type" at the MS-DOS prompt.    Also note
that Win16 length limits are bytes limits; DBCS characters will consume two bytes.    (Win32
limits are characters limits).
On Windows 95, strings are converted from ANSI to UNICODE and vice versa.    They are 
stored in ANSI by the operating system and manipulated in UNICODE by Visual Basic.



Unbound Mode of the DBGrid Control (ReadMe)

In the Add and Write events, the RowBuffer that is passed in is not fully populated, but 
contains entries only for those cells that were modified.    This behavior is inherited from 
bound mode, which does not fetch every column unless it absolutely has to, and hence 
builds a sparse update list.    Therefore, these event handlers need to test each row buffer 
entry for null support before updating the Recordset.
The Read event allows you to inform the DBGrid of BOF/EOF and error conditions by 
setting the RowBuffer object's Count property to 0.    The Add and Write events support 
the same mechanism so that the DBGrid can gracefully handle data conversion and 
insufficient permission errors.
Similarly, you can fail the Delete event by setting Bookmark to Null, because this event 
does not use a RowBuffer.



Remote Data Objects and RemoteData Control Miscellaneous 
Information (ReadMe)

The following information includes tips, techniques, and suggestions that are not included 
in the product documentation.

When using the Bookmark property, be sure to save bookmark values in variables 
declared as Variant, not as String. 

The StillExecuting property also applies to the RemoteData control.
The Version property also applies to the RemoteData control.
The EditMode property applies to the rdoResultset object, even though it is listed 

as only applying to the RemoteData control in Help.



Properties for the DBGrid Control (ReadMe)

The following properties do not appear in the list of properties in the DBGrid Control topic 
in online Help:

Row
Col
FirstRow

Also, TopRow is incorrectly listed as a property of the DBGrid control.



Remote Automation Limitation on 16-bit Applications (ReadMe)

The maximum amount of data transferred across a single Remote Automation call to or 
from a 16-bit application must not exceed 64K bytes.    If it does, an Out of Memory error 
will occur (E_OUTOFMEMORY = 0x80000002L), and the transfer will not be completed.    
This is a per call limit and therefore is based on the sum data transferred from a property 
read/write or the sum of all variables and results being transferred to or from a method 
invocation.    This applies to 16-bit applications regardless of operating environment.
This limitation does not apply to 32-bit applications.



Jump Paths for Help Components in 16-bit Visual Basic (ReadMe)

These are the jump paths that are hard-coded in the Supplemental Help Files topic for 16-
bit Visual Basic Help.    If the (default) directories below are not used when installing the 
components, some of the jumps in Help may not work.
Component Directory
Visual Basic (VB root) VB.HLP
Biblio (VB root)\SAMPLES\BIBLIO.HLP
Data Manager (VB root) DATAMGR.HLP
Learning Microsoft Visual Basic (VB root) VBCBT.HLP
Product Support Services (VB root) PSS.HLP
Samples (VB root)\SAMPLES\SAMPLES.HLP
Setup Wizard (VB root)\SETUPKIT\SETUPWIZ.HLP
Custom Control Reference (VB root) CTRLREF.HLP
Crystal Reports (VB root)\REPORT\CRW.HLP
Hotspot Editor (VB root)\HC\SHED.EXE
ODBC Installation \WINDOWS\SYSTEM\ODBCINST.HLP
SQL Server ODBC Driver \WINDOWS\SYSTEM\DRVSSRVR.HLP
VisData (VB root)\SAMPLES\VISDATA.HLP
Enterprise (VB root) ENTPRISE.HLP
Visual SourceSafe Administrator \SS4\SSUSADM.HLP
Visual SourceSafe Explorer \SS4\SSUSEXP.HLP



StatusBar Cannot Set Left Property of the Panel Object (ReadMe)

Add a StatusBar control to a form, and then add the following code to the Code window:
Private Sub Form_Load()

StatusBar1.Panels.Item(1).Left = 100
End Sub
Run the application.    Visual Basic generates run-time error 383 Property is read-only.    
This is contrary to the description in the Help topic "Left, Top Properties (Custom Controls)."



Creating a Recordset Against an ODBC Data Source (ReadMe)

When creating a Recordset against an ODBC data source with Microsoft Jet data access 
objects (DAO), you must move to the last record before any additional Recordset objects 
can be created.    Using the MoveLast method against the Recordset fully populates the 
result set and frees the connection for additional operations.    If you open an additional 
Database against the same data source, Jet attempts to share the first connection so you 
still cannot create additional Recordset objects until the first Recordset is fully 
populated.



SystemDB Property of the DBEngine Object (ReadMe)

Returns or sets the full path and filename of the System Database (.MDA) file. 
Syntax
object.SystemDB [= value]
The SystemDB property syntax has these parts:
Part Description
object An object expression that evaluates to a DBEngine object.
value A string expression that points to a system database file (typically named 

"SYSTEM.MDA").    This is also known as a "workgroup file."
Remarks
Jet provides the ability for you to define a workgroup and give varying permissions to each 
object in the database to different users in the workgroup.    The workgroup is defined by 
the workgroup file, typically called "SYSTEM.MDA".
For your users to gain access to the secured objects in your database, DAO needs the 
location of the workgroup file that specifies the database.    This can be set either by 
specifying it in the Windows Registry or by using the SystemDB property.
This property is only available in the 32-bit version of Visual Basic.



MaxRows Property (Remote Data) (ReadMe)

When the SQL_MAX_ROWS ODBC statement option is set to a nonzero value, the maximum 
number of rows processed by Microsoft SQL Server is limited to n rows.    This means that 
only n rows are returned by a query, or only n rows are inserted, updated, or deleted by an 
action query.    SQL_MAX_ROWS is set indirectly by using the rdoPreparedStatement 
object's MaxRows property.    If you share the hStmt created for an 
rdoPreparedStatement that has MaxRows set, the operations executed against the 
hStmt are also affected by the limitation imposed by SQL_MAX_ROWS on both the number 
of rows returned from a query and the number of rows processed in an action query.
In addition, if you reuse an rdoPreparedStatement that has MaxRows set, the number 
of rows affected by any update, delete, or insert action query will be limited to n rows.



Using a Forward-Only rdoResultset (ReadMe)

When using a forward-only rdoResultset, the you can reposition the current row only by 
using the MoveNext method.    You cannot use the MoveLast, MovePrevious, 
MoveFirst, or Move method, or the PercentPosition or AbsolutePosition property, to 
reposition the current row pointer.



Error message 35604 - The first column in a ListView control must 
be left aligned (ReadMe)

When the ListView control's View property is set to 3 (Report), the left-most column 
(column 1) can only be left aligned.    Any attempt to set the alignment to another value will
result in error 35604 The first column in a ListView control must be left 
aligned.
This control is 32-bit only.



The topic does not exist.    Contact your application vendor for an 
updated Help file. (ReadMe)

If you see this error message when you are working in Visual Basic, open Help and search 
for the appropriate topic.    Browse through the contents or enter the appropriate words in 
the search dialog box, such as a programming keyword or the name of a dialog box.    On 
Windows 95, you can also make a full-text search using the Find tab.



CreateDragImage Method Doesn't Display Text (ReadMe)

Contrary to what is written in the Help topic, the image being created is not composed of 
both the image and the text, but only of the image.



Phone Information for UK Developer Support (ReadMe)

The phone number is (01734) 271414



ByVal and ByRef Keywords (ReadMe)

If you don't specify either the ByVal or ByRef keyword when passing an argument, your 
value is sent by reference.    The default is ByRef.



Crystal VBX loses DataSource (ReadMe)

When a project containing the Crystal data-bound .VBX control is converted to Visual Basic 
4.0 format and the control is converted to the .OCX version of the control (either 16-bit or 
32-bit), the DataSource property value is lost in the conversion.    The result in this case is 
that the DataSource property is empty.    You must manually set the DataSource back to 
the appropriate Data control.



Should Select Startup Module with Code Profiler (ReadMe)

When you load an application into the Code Profiler, you get a multiselect list of all the 
modules and forms.    This way you can choose to profile selected modules.    If you don't 
select the module that contains the startup point for the application, the Code Profiler will 
never get started when you run the application.



Providing Parameters to Stored Procedures (ReadMe)

This topic applies to Remote Data Objects (RDO), not Microsoft Jet Data Access Objects 
(DAO).
When providing parameters to stored procedures when using ODBC-connected data 
sources, stored procedures can be written to accept parameters that are passed to the 
procedure when it is executed.    These parameters can be passed positionally or by name.   
If you pass parameters positionally, or if you use the rdoParameters collection associated 
with an rdoPreparedStatement, you must provide parameters from left to right.    That is,
even though some parameters might have defaults, you must provide the first parameters 
in the positional list.    If you want all parameters to take their default values, you should 
provide no parameters.    For example, to pass parameters to a procedure that can accept 
three parameters you can use the following code:
My_sp  param1, param2

In this case, param3 is missing, so it is set to its default value as determined by the stored 
procedure declaration.    You cannot however, leave off param1 and still pass param2 
because the ODBC driver does not accept comma placeholders for parameters.
This same rule applies when you pass parameters using rdoParameter objects.    For 
example, if you provide rdoParameters(1) (the second parameter), you must also provide 
rdoParameters(0).
You can provide parameters yourself by using named arguments.    Because each 
parameter in the stored procedure declaration is named, you can use this name in the 
statement that executes the procedure.    For example, to execute a procedure whose 
second parameter is "@Age", you can write the following code:
Execute My_sp  @Age = 10

In this case, the remaining parameters take on their default values.    However, you cannot 
use this syntax with the rdoParameters collection.



Microsoft SQL Server Stored Procedures (ReadMe)

When working with Remote Data Objects (RDO), Data Access Objects (DAO), VBSQL, or the 
ODBC API and Microsoft SQL Server stored procedures, you can create procedures that 
contain one or more SELECT statements or one or more SELECT statements in combination 
with one or more UPDATE, INSERT or DELETE statements.    If you submit these queries in 
batches without benefit of a stored procedure
each statement returns a result set, and the non-SELECT statements return the number of 

rows affected.    If, however, you create a stored procedure that contains UPDATE, DELETE, or
INSERT statements, these statements do not return result sets when the stored procedure is 
executed.    In this case you cannot determine how many rows are returned through 
conventional means
as with the RecordsAffected or RowsAffected properties with DAO or RDO, respectively.
Just to be clear, however, you can execute batch SQL queries and run stored procedures 
that contain a mix of select and action statements using RDO.    The action statements 
execute and if they fail, an error is returned to RDO which causes a trappable Visual Basic 
run-time error which you can trap using On Error syntax.    However, the actual number of 
rows affected by the action statement is not available because this information is not 
returned to ODBC from the SQL Server.
If any portion of the query fails, including the action query, a trappable error is generated, 
so for most situations, you don't need to know the actual number of rows affected by the 
statement.    However, if you need to know the actual number of rows affected, you can 
add:
Select @@ROWCOUNT

after any UPDATE, INSERT, or DELETE statements in your stored procedure.    This    
produces a one-column, one-row result set containing the number of rows affected by the 
action statement.



Releasing Pointers with Visual Basic Add-Ins (ReadMe)
When using C++ to develop add-ins, every time you get a pointer from Visual Basic using 
OLE Automation, you must call "release" when you are done with it.    While Visual Basic 
follows the standard OLE reference counting rules, it isn't always clear when a pointer 
needs to be released.    For example, when you get a pointer out of Visual Basic by calling 
_NewEnum, you must call release through that pointer.    Also, when you use:
pDispatch = m_ourMenuItems.Item(pszCaption);

you must also use:
pDispatch->Release();



OCX Files Installed When Custom Control Not Selected for 
Installation (ReadMe)

If you select Custom and remove the check mark for custom controls when installing Visual 
Basic, a few .OCX files are still installed with the main Visual Basic setup option.    If you 
don't want these files loaded when you start Visual Basic, you'll need to remove the .OCX 
files from AUTO16LD.VBP and/or AUTO32LD.VBP.



Questions and Answers About Microsoft Visual Basic for Windows 
Version 4.0 (ReadMe)

Will the 16-bit and 32-bit versions of Visual Basic 4.0 run on Windows 95?
The 16-bit version of Visual Basic for Windows version 4.0 will run on Windows, Windows for
Workgroups, Windows NT, and Windows 95.    Under Windows NT and Windows 95, it is 
handled as any other 16-bit application.    The 32-bit version will run only on Windows 95 
and Windows NT version 3.51 or greater.    On Windows NT, your application will run in a 16-
bit environment provided by the Windows On Windows (WOW) layer, which allows Windows
NT to run 16-bit applications in a protected environment.
Can I load a VBX control in the 32-bit version of Visual Basic?
VBX custom controls are limited to 16-bit and are fully supported only by Visual Basic 3.0 
and the 16-bit version of Visual Basic 4.0.    Visual Basic 4.0 uses the new OLE control model
as its main control architecture.    Visual Basic has moved to this new, open control model to
support controls in both 16- and 32-bit environments.    The OLE Control architecture 
merges all of the benefits of the VBX custom control with OLE.    The new OLE Controls can 
be used in any OLE client application and are available on 16-bit as well as 32-bit platforms.
Visual Basic 4.0 includes OLE controls (.OCX) that are upgrades to the VBX custom controls 
that shipped in previous versions.    Automatic conversion is provided to replace the VBX 
references in projects with references to OLE controls.    Visual Basic 4.0 will ship with OLE 
equivalents of all of the controls shipped in Visual Basic 3.0, in addition to several brand 
new OLE controls in both 16- and 32-bit versions.    Visual Basic will continue to support 
VBXs in the 16-bit version only.
How can I write an application for 16-bit and 32-bit systems at the same time?
Microsoft has taken a number of steps to assure source code compatibility between 16-bit 
and 32-bit applications:

All Visual Basic-provided language is portable.
All custom controls in the product have identical object models.
Basic file I/O enables files to be shared by applications running on different platforms.

Visual Basic 4.0, Professional and Enterprise Editions include both 16-bit and 32-bit versions
of VB.EXE.    Using a single source code tree, you can create 16-bit applications that run on 
Microsoft Windows 3.X, 32-bit applications that run on Microsoft Windows NT 3.X (Intel), 
and 32-bit Windows 95-based applications.    By taking advantage of the new conditional 
compilation switches in Visual Basic 4.0, you can quickly recompile the same source code 
to target and exploit the capabilities of different Windows platforms.    Conditional 
compilation switches allow you to easily target different platforms or languages using a 
single source code tree and a simple recompile.
Visual Basic provides both the language and command-line support for conditionally 
compiling declarations and procedural code into an application.    Both the Project Options 
dialog and the Visual Basic 4.0 command line allow the setting of constants that are 
subsequently used in evaluating #If...#Else...#End If structures.
#If Win16 Then ' Use Win16 calls.

Declare Function GetWindow Lib "User" (ByVal hWnd As _
 Integer, ByVal wCmd As Integer) As Integer

#Const ANSI=True
#Else ' Use Win32 calls.

Declare Function GetWindow Lib "User32" (ByVal hWnd As _
 Long, ByVal wCmd As Integer) As Long

#Const ANSI=False4
#End If

Can a Visual Basic 4.0 32-bit application run on Win32s?
No.    Win32s is a subsystem of DLLs which extends the Windows 3.1 16-bit operating 
system by translating 32-bit calls to the underlying 16-bit operating system.    Programs 



written with the 32-bit version of Visual Basic running on Windows 3.1 with Win32s would 
generally run slower (due to the extra memory and overhead of the translation layer) than 
the same program created with the 16-bit version of Visual Basic.    Instead of using the 
more limited Win32s features, Microsoft chose to have the 32-bit version exploit the more 
advanced 32-bit features available only on Windows 95 and Windows NT.
Can a developer create DLL files with Visual Basic 4.0?
Visual Basic version 4.0 includes an option to make OLE DLL files.    These files behave 
similarly to standard DLLs except that they use OLE as an interface to the objects described
by the DLL. With Visual Basic 4.0, you can create reusable business objects that can be 
shared across applications.    Rather than having to create DLLs using a C compiler or other 
language, you can now easily create reusable objects entirely from within Visual Basic.
These OLE components accomplish the reusability of DLLs and are easier to reuse because 
they are essentially self-documenting.    
At design time you can browse the components with the Object Browser and examine what 
methods and properties the OLE objects expose.    Similar to the way in which VBX vendors 
encapsulated their expertise into controls, Visual Basic programmers can now rapidly 
package their business rules, commonly used code libraries, as well as any legacy code 
into reusable,    programmable objects.    Once created, these libraries of reusable objects, 
complete with custom properties and methods, can be used by any application capable 
that supports OLE Automation.
A few examples of applications that can reuse these objects are Visual Basic 4.0 (which can
both use and create OLE objects), Microsoft Excel 5.0, Microsoft Access 2.0, and Microsoft 
Project.
Future versions of Microsoft SQL Server, Microsoft FoxPro, Microsoft Word For Windows, and 
Windows will also take advantage of these objects.
Does this mean that I can use a Visual Basic created DLL from other languages?
Yes, you can use the OLE DLLs from other languages (such as Microsoft Visual C++), but 
you do not declare the functions in the DLL like you would a Windows DLL function.    
Instead you access the functions via the OLE interface.
Will Visual Basic 4.0 exist for MS-DOS and Macintosh platforms?
Visual Basic 4.0 incorporates the portable Visual Basic, Applications Edition language 
engine.    Microsoft Excel 5.0 was recently released for the Macintosh and along with it the 
Visual Basic for applications component of    Microsoft Excel, so the language engine is 
there.    There are no commitments at this time for a version of Visual Basic for the 
Macintosh or for MS-DOS, but consideration is one based strictly on a good business case.
Does a specific version of 32-bit Visual Basic exist for Windows NT on MIPS, 
ALPHA, PPC, platforms?
Preliminary discussions have occurred concerning all other major architectures that support
Windows NT, and although no commitments have been made, this is certainly a possibility 
for the future.
The 16-bit version of Visual Basic 4.0 will run on any machine which can run Windows NT.    
Windows NT includes a Windows On Windows (WOW) emulation layer which can run 16-bit 
applications.
Does the 32-bit version of Visual Basic provide statements and functions for 
multitasking?
Currently Visual Basic 4.0 does not support threads on Windows NT 3.5 or Windows 95.    
Research indicates that the main reasons Visual Basic programmers would want to use 
threads in a Visual Basic application would be for asynchronous database queries, printing, 
or file I/O operations.    Microsoft is expecting providers of data sourcing OLE controls to 
provide the former, and will consider the latter for future versions.
Does Visual Basic 4.0 use the new controls of Windows 95?
Visual Basic does use the new Windows 95 controls, but because these are 32-bit controls 
for a 32-bit operating system, they are only available in the 32-bit version of Visual Basic.



Do you know if the third party vendors will be selling OLE Controls soon?
There a large number of control developers who are migrating existing VBX controls to the 
OLE control model as well as those who are writing new controls.    There should be a large 
number of controls available immediately after Visual Basic releases.
Do I need to change my Visual Basic 3.0 applications to compile with the 32-bit 
version of Visual Basic 4.0?
There are two significant changes that need to be addressed to re-compile a Visual Basic 
3.0 application to Visual Basic 4.0 32-bit.
First, if API calls are being used by the application, you must change your API calls to the 
appropriate target environment.    Win16 and Win32 provide APIs with similar functions but 
different Declare statements (to take into account the size of the data types).    Visual 
Basic 3.0 typically uses the 16-bit declarations.    The 32-bit version of Visual Basic 4.0 must
use the 32-bit API declarations.    Rather than simply replacing the existing API calls, you 
can use Visual Basic 4.0's conditional compilation feature to target both 16- and 32-bit 
platforms from a single source code tree.
Second, the 32-bit version of Visual Basic 4.0 makes use of the newer OLE Control 
architecture exclusively.    VBXs are not supported for the 32-bit version.    This is not a 
problem for VBX controls shipped with previous versions of Visual Basic.    All of these 
controls have OLE Control counterparts (in Visual Basic 4.0, these files all end in .OCX).    
You will be prompted to upgrade these controls the first time you load your project into 
Visual Basic 4.0. However, you will need to acquire OLE Control upgrades to any third-party 
controls used in your applications.    While Microsoft has made the technology available for 
control developers to easily port their existing VBX controls to the new OLE Control 
technology, there is no guarantee that all of the available VBX controls will be available as 
OLE Controls.    Contact the control vendor for upgrade information.
The 'Basic Language' code of both the 16-bit and 32-bit versions of Visual Basic are fully 
compatible.    Creating a 32-bit application that runs on either Windows NT 3.5 or Windows 
95    from a Visual Basic 3.0 (or 16-Bit Visual Basic 4.0) application is a simple matter of 
loading an existing 16-bit Visual Basic application into the 32-bit version of Visual Basic and
choosing the Make EXE File command from the File menu.
Do I need to change my Visual Basic 3.0 application to compile with the 16-bit 
version of Visual Basic?
No.    To run a Visual Basic 3.0 application with the 16-bit version of Visual Basic, load the    
source code into the 16-bit version of Visual Basic 4.0 running under Microsoft Windows 3.x,
Microsoft Windows 3.x, Windows NT 3.51, or Windows 95, and make an .EXE file.
Does Visual Basic 4.0 support DBCS?
All versions of Visual Basic 4.0 are Double-Byte Character Set (DBCS) enabled, in that all 
dialogs accept DBCS characters, all edit controls can accept DBCS text, and strings 
specified in code can contain DBCS characters.
In what languages is Visual Basic 4.0 available?
Visual Basic for Windows version 4.0 is slated for release in French, German, Italian, 
Spanish, Chinese, and Japanese.
What is the difference between Standard and Professional versions ?

Feature Highlights Standard
Professional 
and Enterprise

Visual development environment for fast assembly 
through drag-and-drop of pre-built components and 
controls

Yes Yes

New extensible design environment lets you add third 
party products such as source code control and CASE 
tools as well as wizards you create yourself in Visual 
Basic (Professional and Enterprise only) to further 
customize your design environment

Yes Yes



Support for the widest use of pre-built component 
types for rapid development: OLE controls, VBX 
controls (16-bit only),OLE objects, and DLLs

Yes Yes

Advanced structured programming language common
across many Microsoft applications.    Now includes 
object-oriented constructs For Each and With

Yes Yes

Color-coding editor and incremental compiler with 
syntax checking "on-the-fly" and new line 
continuation character

Yes Yes

Full-featured debugging with watch variables, 
breakpoints, and procedure stack

Yes Yes

Rich set of standard controls: Grid, Label, Frame, 
CheckBox, ComboBox, CommandButton, 
DirListBox, Line, Shape, DriveListBox, 
FileListBox, OptionButton, PictureBox, 
HScrollBar, VScrollBar, TextBox, Timer, and 
CommonDialog

Yes Yes

Conditional Compilation for advanced debugging or 
targeting of    both 16- and 32-bit operating systems 
from a single source code tree

Yes Yes

Support for Windows Resource files provide no-
recompile customization

Yes Yes

Professional controls: six more 3-D Interface Controls, 
Animated Button, Gauge, Graph, Key State, Bitmap 
Clipping, Messaging API (2 MAPI controls), Multimedia 
MCI, Communications, Outline, Masked Edit, and Spin 
Button

No Yes

Support for Windows 3.X, Windows NT 3.51 and 
Windows 95

No Yes

Enhanced Jet database engine (includes query 
optimizer, transaction processing, multiuser support, 
cascading updates and deletes, optimistic and 
pessimistic locking, and more)

Yes Yes

Data exchange with the Microsoft Access, Visual 
FoxPro, dBASE, Paradox, and Btrieve (16-bit only) 
databases as well as Microsoft Excel and Text formats 

Yes Yes

Data Manager, for creating and manipulating 
databases, tables, and indexes

Yes Yes

Data control, to access databases without writing 
code, can now supply dynasets, tables, and snapshots

Yes Yes

Many data-aware controls, for building database front 
ends without writing code: TextBox, CheckBox, 
Label, PictureBox, Image, DBGrid, DBList, 
DBCombo, Masked Edit, 3D Panel, and 3D Check Box

Yes Yes

Support for data sourcing OLE Controls for direct 
access and control binding to remote data

Yes Yes

Full ODBC 2.0 support, including scrollable cursors No Yes
Microsoft SQL Server driver No Yes
Full programmatic data-access layer for fine-tuned 
control of the integrated Jet database engine through 
data access objects

No Yes

OLE container control for using OLE components in 
your application dynamically at run time

Yes Yes

OLE Automation support for controlling OLE 
components

Yes Yes



OLE Object Browser provides fast navigation of OLE 
objects and their syntax as well as providing direct 
cut-and-paste capability into Code window

Yes Yes

OLE Compound Document objects on the Toolbox for 
quick drag-and-drop access to pre-built components 
such as the Microsoft Excel charting object with full in-
place editing and toolbar and menu negotiation

Yes Yes

OLE Automation server creation allows the building of 
reusable libraries of your own objects that can be 
used by any tool with OLE Automation support (Excel, 
Project, Access, Visual C++)

No Yes

Context sensitive Help puts the information you need 
at your finger tips

Yes Yes

Improved Setup Toolkit and SetupWizard for creating 
custom setup programs and automating the process 
of distributing applications 

Yes Yes

Sample projects and hundreds of usable code clips in 
online Help

Yes Yes

Icon Library with over 450 icons to enhance your 
applications

Yes Yes

New Crystal Reports for Visual Basic 4.0, including 
improved database engine integration, fine-tuning 
during print preview, integrated e-mail support for 
report distribution, two-pass reporting, grouping, 
mailing labels, and drag and drop all with no run-time 
fee

No Yes

Crystal Reports Control allows easy report runs from 
an application

No Yes

Online Windows 3.1 API reference (Win32 API 
reference on the CD-ROM)

No Yes

Over 250 assorted bitmaps and metafiles for use in 
your applications

No Yes

Help Compiler for authoring Help files for Windows-
based applications

No Yes

What does the Enterprise Edition add to this?
The Enterprise Edition contains all of the features listed above for the Professional Edition.   
In addition, the Enterprise Edition adds the following features.
Remote Data Objects (RDO) and RemoteData control (RDC)
Visual Basic 4.0, Enterprise Edition is bringing an entirely new paradigm to front-end 
developers.    RDO has a set of data access objects not unlike Jet but tuned and optimized 
specifically for SQL Server.    It will also run against Oracle.    This means that it can 
gracefully and efficiently deal with server-side cursors, asynchronous queries, multiple 
result sets, input, output, and return value parameters from stored procedures and much, 
much more  but using the same programming paradigm that Jet uses.    RDO can create a 
"cursorless" result set and three other types of cursors (static, dynamic, and keyset).    It 
promises to become the new standard for accessing SQL Server from Visual Basic.
The RemoteData control is a replacement for the Jet Data control.    It can connect bound 
controls to a selected ODBC data source.    Neither the RemoteData control nor RDO 
require any vestige of Jet, which gives it a much smaller footprint (about 250K).
Visual SourceSafe
The Enterprise Edition of Visual Basic includes Visual SourceSafe, a fully integrated source 
code control system.    It is an easy-to-use tool for team software development.    Visual 
SourceSafe tracks changes to files and stores the changes so that files, such as code 



modules, can be easily and economically reused.
Remote Automation
OLE Automation servers are an ideal mechanism for providing business, data, and 
application services.    Once a service has been implemented as an OLE server, it can be 
used as an application component by developers throughout the enterprise.    Such services
can be implemented very rapidly using Visual Basic.    Remote Automation provides the 
infrastructure for easily extending the OLE client/server relationship across networks.    It 
allows an application's OLE client components to access services provided by OLE servers 
anywhere on the network.
What is new in Visual Basic 4.0?
Visual Basic, Applications Edition
Visual Basic, Applications Edition, version 2.0 (VBA) is added as the language engine in 
Visual Basic.    This version of VBA is fully backward-compatible with earlier versions of the 
stand-alone Visual Basic product, and with Visual Basic, Applications Edition, version 1.0, 
which is included in Microsoft Excel version 5.0 and Microsoft Project version 4.0.    The 
insertion of VBA in Visual Basic 4.0 makes it easier to program OLE Automation objects, and
means that Visual Basic code can be easily moved between modules in the applications 
that support OLE Automation.
Creating Custom Objects and Collections
You can create custom objects, with their own properties and methods, and assemble them 
into an object model.    The definitions of these objects are called classes, and are contained
in Visual Basic's new class modules.    Your object model can include custom collections, 
built using Visual Basic's new Collection object. 
OLE Automation Servers 
Using OLE Automation in Visual Basic, you can borrow the functionality of other applications
by controlling their objects from within your Visual Basic application.    Visual Basic 4.0 also 
gives you the capability of creating your own OLE Automation servers.    You can use Visual 
Basic 4.0, Professional Edition to create applications which expose objects with an interface
of your own design, and are callable from applications supporting OLE Automation, 
including Visual Basic, Visual C++, Microsoft Project, Microsoft Access, and Microsoft Excel. 
Property Procedures
Property procedures allow you to add custom properties to form modules, standard 
modules, and class modules, and to execute code when the property is set or retrieved.    
For example, you could add an Inverted property to a form.    When Inverted is set to True, 
the code in the associated property procedure invokes an API to invert a bitmap on the 
form.    
32-Bit Support and Conditional Compilation 
The 32-bit version of Visual Basic is designed to let you create versions of your programs to
run on 32-bit systems, using the same source code as for 16-bit versions.    The 32-bit 
version of Visual Basic supports long filenames in all project components and relaxation of 
most of the 64K capacity constraints for properties and the Visual Basic language.    With 
conditional compilation, you can embed platform-specific code segments in #If...Then 
statements, and selectively build versions of your application for different platforms. 
Jet 3.0 
Many additional features of the Jet 3.0 database engine are available in Visual Basic 4.0, 
Professional Edition, including the ability to create new databases, change database 
structure, and the ability to manipulate database security and referential integrity.    

In addition, Visual Basic 4.0 adds the following features: 
A 32-bit development tool for creating 32-bit applications
Migration to OLE controls
OLE insertable objects in the Toolbox
Open IDE extensibility
Source code management (SourceSafe)



Improved Crystal report writer
New data-aware controls
Line continuation character, a much requested feature
Commands to allow use of Resource files

How do I apply for a Microsoft beta program?
You can request to become a beta site by writing to: 

Microsoft Corporation
Attn: XXXX Beta Test Administrator
One Microsoft Way
Redmond, WA 98052-6399

where XXXX is the product you want to apply for.    Various products within Microsoft have 
varying capacity to respond to those who are not selected.    Unfortunately, due to the 
volume of requests, the Visual Basic group is not able to inform those who were not 
selected for the beta. 
Where can I find out more about Visual Basic certification?
For information regarding the Microsoft Certified Professional program, the developer 
certification, or the Visual Basic or Microsoft Access exams, please refer to the Microsoft 
Education & Certification Roadmap.    This can be downloaded from CompuServe (GO 
MSEDCERT, Library #5, filename E&CMAP.ZIP) or can be ordered direct from Microsoft by 
calling 800-636-7544. 
How do I send suggestions for product features/improvements to Microsoft?
Contact the Microsoft Wish Line at (206) 936-WISH [936-9474].    If it takes more than two 
minutes to describe, you can do one of the following:

Fax it to us at 206-936-7329
Write to us at:

Attn: Microsoft Wish
One Microsoft Way
Redmond WA, 98052

How can I find out more about calling the Windows API?
The Windows SDK Help file discusses Windows API general topics, functions, structures and 
messages.    Its companion Help file, Windows 3.1 API Help, offers Help on the Visual Basic 
Declare Statements, Type Declarations and Global Constants used to access much of the 
Windows API.    In addition, there are the following resources:
Chapter 26, "Calling Procedures in DLLs," and Chapter 28, "Programming for 16-Bit 
Systems," of the Programmer's Guide    are good places to start looking at DLL and Visual 
Basic issues.
Article Q106553 (How to write C DLL's and call them from Visual Basic)    continues this 
discussion and comments on some memory management issues.
Article Q110219 (LONG: How to call windows API from Visual Basic - General Guidelines) 
may prove a useful reference.    Visual Basic    and C data types do not always translate 1:1, 
and looking at how an API call handles a given data type may give you the type declaration
you will need for your DLL's. 
Article Q109290 (Popular Windows API Functions Used from Visual Basic 3.0) discusses the 
more commonly used API calls by Visual Basic programmers. 
How do I create an OLE Control? 
Visual C++ 2.0 comes with the OLE Control Development Kit, which will enable you to 
create an OLE control.
Article Q113895 (Intro to Microsoft OLE Custom Control Architecture & Tools) discusses OLE 
controls and their future within Visual Basic and Windows. 
Where can I place an order or get upgrade and pricing information about 
Microsoft Visual Basic for Windows?
For information regarding product updates, prices, and sales, please call the Microsoft Sales



Information Center (MSIC) at the following number.    Note that no technical support is 
provided on this line.

In the United States, call 800-426-9400.
In the United Kingdom, call 0734-270000.

Where can I get the latest updates for Visual Basic files?
You can identify available updates by searching for the pointer article in the Knowledge 
Base (described elsewhere in this document).    Search on the keyword UPD or SOFTLIB.    To 
get the latest release of Visual Basic updated files, download the appropriate file (the 
updates are all stored as self-extracting files    *.EXE) from the Microsoft Software Library 
(MSL) on the following services:

CompuServe
GO MSL
Search for <filename>.EXE
Display results and download

Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL
Download <filename>.EXE

Internet (anonymous FTP)
ftp ftp.microsoft.com
Change to the \softlib\mslfiles directory
Get <filename>.EXE

What can you tell me about the next version of ...
Stop! The answer is, Microsoft can tell you nothing.    It is standard Microsoft policy to not 
discuss unannounced products.    Individuals involved in Beta testing Microsoft products are 
bound by a similar non-disclosure agreement which requires that they not discuss the 
product.
What do I do if I have a problem with Visual Basic?
You have a number of options for assistance from Microsoft as well as other developers.    
They include: Telephone support, CompuServe, Internet, and Microsoft Solutions Providers.   
For details, you can look in Visual Basic 4.0 online Help.    Choose Obtaining Technical 
Support from the Visual Basic Help menu for more information.    You can also download 
Knowledge Base article Q108102 which details the same support options and article 
Q80850 for support phone numbers. 
What should I do before I ask for help?
Read the manuals.    The Visual Basic manuals cover every keyword and most common 
programming situations.    This information is also available in the online Help files.    
Look in the Knowledge Base.    The Microsoft Developer Knowledge Base (GO MDKB) is a 
tremendous resource for dealing with Microsoft products.    Developer Support Engineers at 
Microsoft create solutions and explain problems or techniques that come up in the course 
of using Microsoft products.    These discussions are written up into articles and placed into 
the Knowledge Base (KB) which is periodically updated on CompuServe.    The Visual Basic 
Knowledge Base (VBKB_FT.EXE) is a downloadable subset of the Knowledge Base which 
contains articles relevant to Visual Basic.    It contains a full text search engine to help you 
locate the information you want.    This file is available in the Microsoft Software Library (GO
MSL).    CAUTION: This file is over four megabytes in compressed form; it will take a while to
download. 
Look at the FAQ list.    FAQ:    A    Frequently Asked Questions list is currently available on the 
Internet (not an MS document) and Microsoft will have a FAQ on CompuServe in the near 
future. 
Isolate the problem.    Isolating the problem often leads to the solution.    Also, if you can't 
accurately describe how and when the problem occurs, then any support engineer would 
have to take you back through your code to attempt to isolate the problem. 



What are some things I can do to isolate the problem?
First and foremost, make a backup.    This is the point at which even experienced 
programmers frequently lose many hours of work.    When you experiment, it is far too easy
to accidentally overwrite or delete necessary sections of code.
Use the debugging facilities built in to Visual Basic 4.0.    See Chapter 20, "Debugging," in 
the Programmer's Guide.    Attempt to identify the line or lines of code generating the error. 
Isolate the code.    If you can isolate the problem to one block of code, try to reproduce the 
same problem with this block of code separated from the rest of your program.    Select the 
code, copy it, start a new project, paste the code into the new project, run the new project, 
and see if the error still occurs.
Create a log file.    If you cannot isolate the code or if the problem is erratic or if the problem
only happens when compiled, then the debugging facility of Visual Basic will be less 
effective.    In these situations you can create a log file which records the activity of your 
program.    This will allow you to progressively isolate the location of the suspect code.    Call
the following procedure from various points in your program.    You should pass in a string of
text which indicates the current location of the code executing in your program. 
Sub LogFile (Message As String)

Dim LogFile As Integer
LogFile = FreeFile
Open "C:\VB\LogFile.Log" For Append As #LogFile
Print #LogFile, Message
Close #LogFile

End Sub

Sub Sub1 ()
'...
Call LogFile("Here I am in Sub1")
'...

End Sub

Simplify the problem.    If possible, remove any third party controls and custom controls 
from your project.    Replace them with Visual Basic standard controls.    Eliminate any code 
that does not seem to relate to the problem.
Reduce the search space.    If you cannot resolve the problem with any of the above 
methods, then it is time to eliminate all other non-Visual Basic causes from the problem 
search space.    Copy your AUTOEXEC.BAT and CONFIG.SYS files to backup files.    Comment 
out any and all drivers and programs from these two files that are not absolutely essential 
to running your program under Windows.    Change your Windows video driver to the 
standard Windows VGA driver.    Shut down Windows and reboot your machine.    This will 
eliminate the possibility that there is some other program or driver which is interfering with
your program.
If you cannot locate a solution and are unable to isolate or resolve the problem with any of 
these methods, it's time to look for help.    See the online Help under "Technical Support" or 
check into the other resources mentioned in this file.
How can I get Knowledge Base articles?
You can request individual articles to be faxed to you via the FastTips service.    Microsoft 
FastTips is an automated fax and voice service that provides technical product support 
information at no charge through 800 numbers available 24 hours a day, 7 days a week 
(including holidays).    You can use FastTips services with your touch-tone phone.    Each of 
the specific FastTips services listed at the end of this article includes the following:

A comprehensive map for easy navigation.
A Microsoft FastTips Technical Library catalog, from which you can obtain current 

technical support information by ordering Microsoft Knowledge Base articles and Application 
Notes.

Recorded questions and answers for the most frequently asked questions about 
Microsoft products.    Faxes of these questions and answers are also available with the 



FastTips services.
Microsoft Desktop Applications: (800) 936-4100
Microsoft Personal Operating Systems:(800) 936-4200
Microsoft Development Tools: (800) 936-4300
Microsoft Advanced Systems: (800) 936-4400

For best use of the FastTips services, request a map and catalog during your first call.
If you cannot determine which article is best for you, you can get assistance by calling the 
Product Support numbers.    Engineers have access to the complete Microsoft Knowledge 
Base and can fax or mail the individual articles.
Can I get a copy of the entire Knowledge Base?
Due to its size, the Microsoft Knowledge Base is made available to the public by the 
individual product groups in separate pieces.    The Visual Basic Knowledge Base 
(VBKB_FT.EXE) is a downloadable subset of the Knowledge Base which contains articles 
relevant to Visual Basic.    It contains a full text search engine to help you locate the 
information you want.
There are over 600 categorized articles in the Visual Basic for Windows collection.    The two
Help files that hold these articles have been placed in a self-extracting file that you can 
download from several different places (listed later in this section).    Choose to download 
either VBKB_FT.EXE (the full-text search version) or VBKB.EXE (the version without full-text 
search).
The Help files in VBKB_FT.EXE have an additional Find button that allows full-text search.    
The Help files in VBKB.EXE do not have the Find button and do not allow full-text search.    
The technical content in VBKB.EXE is identical to that in VBKB_FT.EXE.    VBKB.EXE is 1.5 
megabytes in size while VBKB_FT.EXE is approximately 4 megabytes.    VBKB_FT.EXE is 
larger because it includes index and .DLL files needed for full-text search.
To obtain the Help files, download VBKB.EXE or VBKB_FT.EXE.    Then run it in an empty 
directory to extract the files.

Download VBKB_FT.EXE if you want to use full-text search to query the Microsoft 
Visual Basic Knowledge Base.    The Help files in this package include a Find button that 
allows you to search the Microsoft Knowledge Base for any word you choose.

Download VBKB.EXE if you want a smaller package and don't need full-text search.    
The Help files in this package have only the Search button, which allows you to search for 
article Q numbers (the number that identifies each Microsoft Knowledge Base article).
Where to Find VBKB.EXE and VBKB_FT.EXE
Download either VBKB.EXE or VBKB_FT.EXE (both are self-extracting files) from the 
Microsoft Software Library (MSL) on the following services:

CompuServe
GO MSL
Search for and download VBKB.EXE
-or-
Search for and download VBKB_FT.EXE

Microsoft Download Service (MSDL)
Dial (206) 936-6735 to connect to MSDL
Download VBKB.EXE or VBKB_FT.EXE

Internet (anonymous FTP)
ftp ftp.microsoft.com
Change to the \softlib\mslfiles directory
Get VBKB.EXE
-or-
Get VBKB_FT.EXE



After downloading either VBKB.EXE or VBKB_FT.EXE, run it to extract the files it contains.
What are some books that might be of use to a Visual Basic developer?
Title: PC Magazine: Visual Basic Programmer's Guide to the Windows API
Author: Appleman
ISBN: 1-56276-073-4
Publisher: Ziff-Davis Press

Title: Windows 3.1 Programming for Mere Mortals
Author: Woody Leonhard
ISBN: 0-201-60832-4
Publisher: Addison-Wesley

Title: Database Developer's Guide with Visual Basic 3
Author: Roger Jennings
ISBN: 0-672-30440-6
Publisher: Sams Publishing

Title: Running Visual Basic for Windows (2nd Ed.) [covers 3.0]
Author: Ross Nelson
ISBN: 1-55615-564-6
Publisher: Microsoft Press Div. of Microsoft Corp.

Title: Guide to the SQL Standard, A: A User's Guide to the Standard Relational 
Language SQL
Author: C.J. Date
ISBN: 201502097
Publisher: Addison-Wesley Publishing Co. Inc.

Title: Inside Windows 95
Author: Adrian King
ISBN: 1-55615-626-X
Publisher: Microsoft Press

Title: Programming Windows 3.1, Third Edition
Author: Charles Petzold
ISBN: 1-55615-395-3
Publisher: Microsoft Press

In addition, there is a reading list of books, periodicals, and other information in the 
Knowledge Base in article number Q118782.
When I load an existing application into Visual Basic 4.0, it says it's going to 
'upgrade' my controls. Is it actually changing my controls and should I back them
up?
No.    Your controls are fine.    Visual Basic 4.0 contains newer, backward-compatible controls
that replace controls shipped with previous versions of Visual Basic.    Your project's .VBP file
will be updated to use these newer controls if you click Yes.    It is recommended that you 
use the latest controls so that you can take advantage of any new features that have been 
implemented.
Why are the distributables so large?
Visual Basic 4.0 uses the OLE Control architecture on a scale unmatched by any other in 
the industry.    This means that until the OLE Control architecture becomes the industry 
standard and part of the Windows operating system, Visual Basic programs have to include 
the support files which enable this powerful new technology.    It is expected that as the OLE



model becomes integrated at the operating system level, this requirement will fall away 
and the size of the distributable will drop dramatically.



GetRows Example Incorrect Code (ReadMe)

The example provided with the GetRows method is incorrect.    It uses the CurrentDB() 
function, which is not supported in Visual Basic 4.0.    This function returns the "current" 
Database but is only applicable in Microsoft Access.    The code also incorrectly codes the 
arguments to the OpenRecordset method.    Instead of a "+" between the 
dbOpenSnapshot and dbForwardOnly arguments, you should code a ",".    The example 
also uses the NorthWind example database as supplied with Microsoft Access.    The 
corrected code is shown below:
Dim dbsCurrent As Database, rstTitle As Recordset
Dim avarRecords As Variant
Dim intFields As Integer, intRows As Integer

Set dbsCurrent = OpenDatabase("biblio.mdb")

Set rstTitle = dbsCurrent.OpenRecordset("Select * from titles", _
dbOpenSnapshot, dbForwardOnly)

avarRecords = rstTitle.GetRows(50)

intField = 0
intRecord = 0

' Use intField and intRecord as array indexes to enumerate
' the returned records, locate particular values, and so on.



Enterprise AutoLoad File Contains a Different Data Access Reference
in 32-bit Versions (ReadMe)

The 32-bit Enterprise Edition AutoLoad File (AUTO32EN.VBP) contains a reference to 
Remote Data Objects (MSRDO32.DLL) instead of Data Access Objects (DAO3032.DLL).



DBGrid Control Doesn't Repaint Border When Moved (ReadMe)

When using the Move method of the DBGrid control, the grid will not repaint its border 
correctly.    To solve this problem, issue a Refresh immediately after moving the grid.    For 
example:

DBGrid1.Move 5,5
DBGrid1.Refresh ' This will cause the grid to repaint itself.



NoDrop MousePointer is Nonfunctional in 16-bit Gauge and Key 
State Controls (ReadMe)

If you set the MousePointer property of the 16-bit Gauge or Key State controls to 12 - 
No Drop, then run the application and locate the mouse cursor so that it is over the control,
you'll see that the shape of the cursor is still the default.
The solution is to set the MousePointer property to 99 - Custom and set the MouseIcon 
property to your own NoDrop icon or some other custom icon.



Component Manager Displays Hidden Coclasses and Interfaces 
(ReadMe)

This topic applies only to the Enterprise Edition of Visual Basic 4.0.
The Add OLE Components dialog box improperly lists hidden properties and methods of 
OLE servers.



Toolbar Control: Button Objects with Placeholder Style Don't Wrap 
(ReadMe)

If a Button object in a Toolbar control is the last button on the toolbar, and has the Style 
property set to tbrPlaceholder (4), the button does not wrap properly.
To avoid this, make sure a button with the Style property set to tbrPlaceholder (4) is not 
the last button on the toolbar.    Instead place an invisible, disabled button with the Style 
property set to tbrDefault (0) at the end.

Note      This may not always work, as after a resizing the Toolbar control, a button with the 
Style property set to tbrPlaceholder (4) could still become the last button, and thus not 
wrap properly.



Masked Edit Control: Mask Characters Incorrectly Listed in Custom 
Control Reference (ReadMe)

In the Mask property topic, the printed Custom Control Reference lists '0' and 'L' as mask 
characters.    Actually, they are literals, not mask characters.    Online Help contains the 
correct list of mask characters for the Mask Property.    The Mask Property applies to the 
Masked Edit control.



Cols Property of the DBGrid Control (ReadMe)

The VisibleCols property topic incorrectly states that the Cols property applies to the 
DBGrid control.    The number of columns in a DBGrid control is actually determined by the
Count property of the Columns collection.
DBGrid columns are added or removed at run time by manipulating the Columns 
collection through use of the Add and Remove methods.



Help Button on Customize Toolbar Dialog is Inactive (ReadMe)

The Help button on the Toolbar's Customize Toolbar dialog box is inactive.    To display this 
dialog box, place a Toolbar control on a form, set the AllowCustomize property of the 
Toolbar to True, run the application, and then double-click a blank portion of the Toolbar 
control.    The Help button that appears on the dialog is inactive.    That is, no Help topic is 
displayed when the button is clicked.



Grouped OptionButton Controls on the SSTab Control (ReadMe)

If you intend to put OptionButton controls on more than one tab of the SSTab control, be 
sure to place them on separate Frame controls.    Otherwise, the OptionButton controls 
will act as if they are grouped together.



HitTest Method Example has Faulty Code (ReadMe)

The HitTest method example contains the following code:
Private Sub TreeView1_MouseMove(Button As Integer, Shift As Integer, _
x As Single, y As Single)

If Button = vbLeftButton Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x,y)

End If
End Sub

This code will not work.    A simple edit is necessary.    Remove the following statements:
If Button = vbLeftButton Then
.
.
End If 

This results in the code below, which runs correctly:
Private Sub TreeView1_MouseMove(Button As Integer, Shift As Integer, _
x As Single, y As Single)

' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x,y)

End Sub



Remote Procedure Call (RPC) Files (ReadMe)

Chapter 30, "Distributing Your Applications," of the Programmer's Guide, incorrectly states 
that when you use the SetupWizard to create the distribution media for your 16-bit 
application, and specify a .VBR file (Remote Support file) by using the Add OLE Servers 
button, the RPC files are not included for distribution.
In fact, when you specify a .VBR file by using the Add OLE Servers button, the RPC files are 
included for distribution.    You are not required to install the RPC components using a 
separate RPC setup program.



Visigenic Oracle 32-bit Driver Installation Requirements (ReadMe)

The Oracle driver is installed automatically if the following three drivers are present on the 
user's machine:    
ORANT71.DLL
SQLNTTT.DLL
CORENT23.DLL
If a user does not have these files present when Visual Basic is installed, install them and 
then rerun Visual Basic setup.



HeadForeColor Property Applies To the Column Object (ReadMe)

Contrary to what is written in the HeadForeColor property topic in online Help, it applies 
to the Column object, not the DBGrid control.



Picture Property is Read-only for ImageList ListImages (ReadMe)

The note at the bottom of the Picture Property (Custom Controls) online Help topic states 
you can assign the graphic returned by the LoadPicture function to the Picture property.   
This is incorrect, since the ListImages property is read-only at run time.    If you try to 
assign to it a graphic returned by the LoadPicture function, you will get run-time error 383
(Property is read-only).



Miscellaneous Jet Issues (ReadMe)

The following list describes miscellaneous Jet issues.
The Data Access Objects (DAO) BeginTrans method (on the Database or 

Workspace objects) allows at most five levels of nested transactions.
Jet (Access) 2.0 databases containing more than 32 relationships cannot be 

converted to Jet 3.0 format and will result in the error Couldn't create index; too many 
indexes already defined.    The solution is to remove enough indexes or relationships to 
allow the conversion to proceed.    The maximum number of indexes is 32, and in Jet 3.0 both
sides of relationships use an index.

Multiple users attempting to access Paradox tables over a network may see the error:
Invalid file format.    This error is caused by not having registry entries for 
ParadoxNetPath that point to identical drive letters and net files on both users machines.

For Access 2.0 databases with multiple sessions running on one machine (using 
optimistic concurrency), if two sessions try to update the same record, the second session 
will fail (correct behavior), but the error message will be Write conflict error which may 
be unclear.
Attempts to import extremely small values from text files (less than 2.225E-308) into IEEE 
double fields will not succeed and will return the error Conversion failure.

If a user exceeds the server lock count while running a Windows 95 client against a 
Novell NetWare server, the users application will not complete properly.    Workarounds 
include:

Increase the number of locks on the server.
Open the table as 'exclusive', which should prevent locking.



SaveToFile vs. SaveToOle1File (ReadMe)

The Remarks section of the SaveToFile method Help topic reads:    "Use this method to 
save OLE objects.    To save an OLE object, use the SaveToOle1File method."
The SaveToOle1File method Help topic reads:    "Saves an object in the OLE file format."    
Then, in the Remarks section, it reads "If the object you want to save is an OLE object, use 
the SaveToFile method."
The SaveToFile method topic should read: "Use this method to save OLE objects.    To save 
an OLE 1.0 object, use the SaveToOle1File method."
The SaveToOle1File method topic should read: "Saves an object in the OLE 1.0 file format.
If the object you want to save is an OLE    2.0 object, use the SaveToFile method."



Using the RemoteData Control and the SQL Property (ReadMe)

The RemoteData control behaves like the Jet-driven Data control in most respects. The 
following guidelines illustrate a few differences when setting the SQL property.
The RemoteData control has no RecordSource property. You can treat the RemoteData 
control's SQL property like the Data control's RecordSource property except that it 
cannot accept the name of a table by itself unless you populate the rdoTables collection 
first.    Generally, the SQL property specifies an SQL query.    For example, instead of just 
"Authors", you would code "SELECT * FROM AUTHORS" which provides the same 
functionality.
The result set created by the RemoteData control might not be in the same order as the 
Recordset created by the Data control. For example, if the Data control's RecordSource 
property is set to "Authors" and the RemoteData control's SQL property is set to "SELECT 
* FROM AUTHORS", the first record returned by Jet to the Data control is based on the first 
available index on the Authors table.    The RemoteData control, however, returns the first 
row returned by the remote database engine based on the physical sequence of the rows in
the database, regardless of any indexes.    In some cases the order of the records could be 
identical, but not always.
This difference in behavior can affect how bound controls handle the resultant rows -- 
especially multiple-row bound controls like the DBGrid control.



Shell Function Does Not Launch Documents with Associated 
Applications (ReadMe)

The Shell Function Help topic implies in the description of the 'pathname' argument that it 
will launch documents with their associated applications:

"pathname Name of the program to execute and any required arguments or command 
line switches; may include directory and drive.    May also be the name of a document that 
has been associated with an executable program."

In fact, Shell does not have the capability of launching files based on their file association.
In order to launch a document using its file association use the ShellExecute Windows API 
call.    For example, the following code will launch the file TEST.DOC using the file 
association for .DOC files:
#If Win32 Then
Private Declare Function ShellExecute Lib _

"shell32.dll" Alias "ShellExecuteA" _
(ByVal hwnd As Long, _
ByVal lpOperation As String, _
ByVal lpFile As String, _
ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

#Else
Private Declare Function ShellExecute Lib _
"shell.dll" Alias "ShellExecute" _
(ByVal hwnd As Integer, _
ByVal lpOperation As String, _
ByVal lpFile As String, _
ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Integer) As Integer

#End If

Private Const SW_SHOWNORMAL = 1

Private Sub Command1_Click()
Dim iret As Long
iret = ShellExecute(Me.hwnd, _

vbNullString, _
"c:\test.doc", _
vbNullString, _
"c:\", _
SW_SHOWNORMAL)

End Sub
Also note that the Shell function now returns a Long.    This is not stated in the Help topic.



Public Statement Cannot be Used in a Procedure (ReadMe)

The Public statement Help topic contains a Tip that indicates Public can be used in a 
procedure.    In fact, it cannot be used in any type of procedure.



Unable to Start DDE Communication with Program Manager 
(ReadMe)

If you receive this error while installing Visual Basic 4.0, try the following procedure before 
restarting installation.
1. Close all open applications and folders
2. Restart your machine.



Orphaned Stored Procedures (ReadMe)

When using the ODBC API, Remote Data Objects, or the Microsoft Jet database engine to 
connect to an ODBC data source, the SQL Server driver might not remove temporary stored
procedures created by the ODBC driver in the course of working on your application.    This 
is most likely to occur when working in design mode and constantly starting, stopping, 
debugging and restarting applications.    Loading new applications does not clear unused 
stored procedures.    After working for some time, the TempDB database might become full. 
In this case, try ending Visual Basic or terminating the SQL Server connection.    This might 
free sufficient space to continue working.
If this does not work, you must restart the SQL Server to release these resources.    Note 
that this situation is exacerbated in development environments where a number of users 
are accessing the same SQL Server, each creating their own temporary stored procedures.   
This problem does not affect ODBC executables as their temporary stored procedures are 
released when the application ends.



RowLoaded Event Is Not Supported (ReadMe)

Contrary to what is included in Help, the DBGrid control doesn't support the RowLoaded 
event.



Specifying Quoted Strings When Using ODBC Data Sources (ReadMe)

When passing quoted strings as arguments in SQL statements, you can no longer use 
double quotes to frame strings; you must use single ( ' ) quotes.    For example, the 
following SQL query is acceptable in SQL Server version 4.2 when accessed by Visual Basic 
Version 3.0:
Select *  From titles where title like "Computer%"

This SQL syntax is no longer supported by the ODBC drivers included with Visual Basic 
version 4.0 and must be coded as follows:
Select * From titles where title like 'Computer%'

In cases where strings include embedded single quotes, you must edit your code to 
accommodate this change.



Directories Added to the SETUPKIT Directory (ReadMe)

Two additional directories have been added to the VB\SETUPKIT directory.    These are:
\SETUPKIT\KITFILES\SYS16 (16-bit only)
\SETUPKIT\KITFIL32\SYS32 (32-bit only)

When the SetupWizard looks for system files to copy to the distribution disk, it first looks in 
the corresponding \KITFILES directory rather than the computer's system directories.    The 
purpose of this is to allow the SetupWizard to run from any 16-bit or 32-bit operating 
system and yet copy system files to the distribution disks that are appropriate for the 
application's target platform.    The \KITFILES\SYS16 directory currently contains mostly 16-
bit OLE files, and the \KITFIL32\SYS32 directory currently contains the Windows NT version 
of CTL3D32.DLL, which the Setup Toolkit never installs under Windows 95.



Graph Control ExtraData Property Example (ReadMe)

The example code provided with the Help topic for the ExtraData property of the Graph 
control doesn't work correctly.    It first sets DrawMode = 2, which draws the picture and 
then sets GraphType = 2, which should draw a 3D pie chart.    Change the last two lines as
follows:
Graph1.DrawMode = 2
Graph1.GraphType = 2

to:
Graph1.GraphType = 2
Graph1.DrawMode = 2



Creating Example SETUP.LST Files (ReadMe)

To create the example SETUP.LST file for the Setup Toolkit, run the SetupWizard on a sample
application like CALC.VBP.
1. Start the SetupWizard.
2. Point it to \SAMPLES\CALC.VBP.
3. Point to some temporary directory on your hard drive. 
4. At step 7, accept all defaults and click Finish.
5. The SETUP.LST created on your hard disk is the file that you want.    You can discard all 

others.
6. Repeat for the 16-bit or 32-bit versions if needed.



Context-Sensitive Help Disabled on Some Dialog Boxes    (ReadMe)

Due to the way that Windows 95 supplies context sensitive help for all dialog boxes based 
on the system-supplied common dialogs, pressing the F1 key in many of the dialogs in 
Visual Basic 4.0 while running under Windows 95 will only bring up generic operating 
system-supplied Help windows.    To obtain specific Help for a dialog box, search in Help 
using the title of the dialog box.    For example: to search for more information on the Make 
EXE File dialog box search for "Make EXE File."    The topic in this case appears under "Make 
EXE file command." 



Setup Does Not Launch Correctly From Drive B (ReadMe)

Attempting to launch Visual Basic Master Setup from a network drive that is logically 
mapped to 'B:' fails.    To prevent this problem from occurring, map your network drive to a 
letter other than 'B'.



Temporary Stored Procedures (ReadMe)

When the ODBC interface executes an SQL statement, it creates one or more stored 
procedures on the server.    These procedures contain the SQL statement specified in the 
rdoPreparedStatement object or the OpenResultset method and are designed to 
accept any parameters that might be specified for the statement.    Depending on the 
version of the server, these procedures are either created in the current database or in the 
TempDB database.    In some cases, several stored procedures can be created for a single 
statement.    Generally, these procedures are not released until you close the connection or 
end the application.    Ending the application in design mode does not clear these 
statements.    In this case, only ending Visual Basic clears these temporary procedures.
To avoid the creation of these procedures in the first place, specify the rdExecDirect 
option when using the OpenResultset method.    For example,
Set rs = cn.OpenResultset("Select * from Authors", rdOpenStatic, _
rdConcurValues, rdExecDirect)

By using the rdExecDirect option, the ODBC interface does not create a procedure which 
is used to subsequently run the SQL statement.    In some cases, this can be somewhat 
faster to execute, but only if the statement is used infrequently.



ODBC Driver Produces General Protection Faults When Given 
Incorrect Syntax (ReadMe)

In some cases, when you use the OpenResultset method and the SQL statement specified
contains invalid SQL syntax, the ODBC driver fails with an untrappable GPF.    Not all syntax 
errors cause this. The following SQL query causes this type of GPF:
" Select * from authors where name '%' (?) '%'  "

To avoid this problem, verify all SQL statements for accuracy and correct syntax before 
using them in your application.    In addition, do not permit users to enter SQL statements 
directly, as these might be prone to failure.



TabStrip Control DblClick Event Not Supported (ReadMe)

The TabStrip control topic in online Help incorrectly lists this as one of the events for the 
control.    The TabStrip control does not support the DblClick event.



Master Setup Won't Run from a UNC Path (ReadMe)

If you run MSETUP from a UNC path, ie: "\\visualbasic\vb4\help\readme" then it cannot shell
to the actual Visual Basic setup.    On the other hand, the Visual Basic setup itself will run 
from a UNC path.



Working with BLOB Data Types and the ODBC Cursor Library 
(ReadMe)

Many DBMS's, including SQL Server, support Binary Large Object (BLOB) data types.    
These types are most often used to store large amounts of text or image data.    Due to 
limitations in the ODBC cursor library, special rules apply to the use of these kinds of data 
types when using ODBC cursors.
The ColumnSize property on the rdoColumn object represents the actual length of the 
data in a BLOB column.    When using the ODBC cursor library, this value will always be -1, 
indicating that the data length is not available.    When using server-side cursors, the 
ColumnSize property will always return the actual data length of a BLOB column.
To get the data from a BLOB column, the user must use the GetChunk methods, which 
take a number of bytes to retrieve at a time.    When using server-side cursors, the user can
pass the value of the ColumnSize property as the number of bytes to retrieve to get all 
the data at once.    Since the ColumnSize property is not available when using the ODBC 
cursor library, the user should call GetChunk repeatedly until no more data is returned.    
Below is a code sample that shows how to do this:
Dim s As String
Dim sTemp As String
Dim lColSize As Long

lColSize = MyResultset!MyBLOBColumn.ColumnSize
If lColSize = -1 Then

' Column size is not available.
' Loop getting chunks until no more data.
sTemp = MyResultset!MyBLOBColumn.GetChunk(50)
Do

s = s & sTemp
sTemp = MyResultset!MyBLOBColumn.GetChunk(50)

Loop While Len(sTemp) > 0
Else
' Get all of it.

If lColSize > 0 Then
s = MyResultset!MyBLOBColumn.GetChunk(lColSize)

End If
End If

In addition, when using ODBC cursor library and BLOB data types, the user must select at 
least one non-BLOB column in their result set so that RDO can use SQLExtendedFetch to 
retrieve the data.    This would be the common case anyway, since you need to include a 
key field in the result set if you want to update the data.



SQL Server 6.0 Transactions With Server-Side Cursors (ReadMe)

Due to a bug in the SQL Server ODBC driver, calling the BeginTrans method of the 
rdoConnection object after the result set has been opened will not actually begin a 
transaction on the server, and the user is still in auto-commit mode.    This bug does not 
affect transactions when using the ODBC cursor library, only when using SQL Server 6.0 
server-side cursors.
To work around this problem, the user can either begin the transaction before the result set 
is opened, or execute Transact SQL statements to begin, commit and roll back transactions. 
The following sample code shows how to use Transact SQL statements to do transactions:
Dim cn as rdoConnection
Dim rs as rdoResultset

Set cn = rdoEnvironments(0).OpenConnection("")
Set rs = cn.OpenResultset("select * from authors", rdOpenKeyset, 
rdConcurValues)
...
' Do a transaction and roll it back.
cn.Execute "BeginTrans"
rs.Edit
rs(0) = "Some Value"
rs.Update
If fAllIsOK Then

cn.Execute "CommitTrans"
Else

cn.Execute "RollbackTrans"
End if



Use DAO to Access Local ISAM Databases (ReadMe)

Remote Data Objects (RDO) were designed to access remote databases and not local 
ISAMs.    Data Access Objects (DAO) is the best choice to use when working with ISAM data 
because it's built with the semantics used with ISAM data (find methods, opening tables 
rather than executing queries).    There is also no benefit to using RDO when talking to ISAM
data, since the Microsoft Access ODBC driver will still load the Jet engine.



"For...Next Statement" Counter Can Be An Element Of a UDT 
(ReadMe)

In the Help topic "For...Next Statement", the description of the syntax element "counter" 
incorrectly states: "The variable can't be an element of a user-defined type."    In fact, the 
counter can be an element of a user-defined type (UDT).    This was not allowed in Visual 
Basic 3.0, but is a feature of Visual Basic 4.0. 
For example, add this declaration to a standard module:
Type x

i As Integer
End Type

Then , insert the following code in the Form_Load procedure:
Private Sub Form_Load()

Dim z As x
For z.i = 1 To 10

Debug.Print z.i;
Next
Debug.Print
With z

For .i = 1 To 5
Debug.Print .i;

Next
End With
Debug.Print

End Sub



Memory Leaks with Remote Automation Applications on Windows NT
Version 3.51 (ReadMe)

Visual Basic applications using machines acting as Remote Automation servers (in other 
words, running AUTMGR32.EXE) may consume resources until they finally exhaust all 
available resources and the machine hangs.    This typically occurs when memory is not 
cleaned up after objects are created and then released by the operating system.    This 
problem is fixed by NT 3.51 Service Pack 2.

Obtaining a Windows NT Service Pack



Obtaining a Windows NT Service Pack (ReadMe)

You can obtain a Windows NT Service Pack by the following methods:

For CompuServe (i386 only):
Log onto CIS and type the following:
Go microsoft
7 (Microsoft Support Forums and Services)
1 (US Product Support)
8 (Microsoft Operating Systems)
6 (Microsoft Windows NT Service Pack Download Area)
Download latest Service Pack for NT 3.51

For Internet Access:
ftp ftp.microsoft.com
logon anonymous
cd bussys/winnt/winnt-public/fixes/nt351
bin
get <Latest Service Pack for NT 3.51>



Insufficient Disk Space to Complete This Operation (ReadMe)

This error is caused by too many network protocols loaded on a machine.    To avoid this 
error, you can set Registry keys to prevent the loading of specific protocols on any given 
machine.    Locate these keys at the following location in the Registry:
HKEY_LOCAL_MACHINE/Software/Microsoft/Automation Manager

The keys beginning "nca" indicate which network protocols are loaded.    In each case the 
value is a DWORD.    Set the value to zero for protocols you don't want loaded.
You can check the NT Event Log to determine which network protocols are loaded on a 
machine.
This problem is fixed by NT 3.51 Service Pack 2.

Obtaining a Windows NT Service Pack



Call was Rejected by Callee (ReadMe)

This error occurs when outbound methods from Remote Automation applications cross each
other, or when server applications are extremely busy.    To avoid this error, you can change 
the timeout setting on the server machine.    Locate the appropriate key at the following 
location in the Registry:
HKEY_LOCAL_MACHINE/Software/Microsoft/Automation Manager

The timeout setting is the value for the key "OLEServerBusyTimeout".    The value is a 
DWORD.    Increase this value as needed to avoid the error.



Gauge Control Picture Property Also Accepts .WMF Files (ReadMe)

The Help topic for the Gauge Control's Picture property states that the control 
accepts .BMP and .ICO files.    In addition, the Picture property will accept .WMF files.



User-Defined Types And Fixed-Length Strings Not Allowed As The 
Type Of A Public Member (ReadMe)

The full text of the error is "User-defined types and fixed-length strings not allowed as the 
type of a public member of a class or form; private classes and form modules not allowed 
as the type of a public member or a public class."    The Help topic associated with this error
is titled "User-defined types not allowed as the type of a public member of a class"
The Help topic should also say that you can't pass user-defined types through a public 
member of a class.    The reason is that OLE Automation doesn't support user-defined types.
Consequently you can't have a public member in a class module or form module which has 
a user-defined type parameter.    The member must be private (in other words, not 
exposed).
For example, create a new project including a form module with a Label placed on it, a 
class module, and a standard module.    Insert the following code in the form:
Dim x as New Class1

Private Sub Form_Load()
x.StartIt

End Sub

Insert this declaration in the standard module:
Type TestUDT

i As Integer
End Type

Insert these two procedures in the class module:
Sub StartIt ()

Dim udtX as TestUDT
udtX.i = 45
TryThis udtX

End Sub

Private Sub TryThis (y As TestUDT)
Form1.label1.Caption = "hello"

End Sub

Run the application.    The code runs with the TryThis procedure declared as a private 
procedure.    If you delete the Private keyword in the TryThis procedure declaration and 
then run the application, you get the error discussed in this topic.



Product Support Phone Number in Japan (ReadMe)

The product support phone number for Japan listed in the Programmer's Guide and online 
Help is incorrect. The correct phone number is:
(81) (424) 41-8700
This number is used for free support up to 90 days after purchase of Visual Basic 4.0.



Constant Values in the Value Property (Custom Controls) Topic 
(ReadMe)

In the online Help topic Value Property (Custom Controls), the values for the Toolbar 
control constants tbrPressed and tbrUnpressed are reversed.    The correct values for 
these constants are:
tbrPressed 1
tbrUnpressed 0



Persistent Remote Data Object rdoResultset Objects (ReadMe)

When you use the OpenResultset method against an rdoConnection or 
rdoPreparedStatement, and assign the result to an existing rdoResultset object, the 
existing object is maintained and a new rdoResultset object is appended to the 
rdoResultsets collection.    When performing similar operations using the Microsoft Jet 
database engine, existing recordsets are automatically closed when the variable is 
assigned ,and no two Recordsets collection members can have the same name.    For 
example, using RDO:
Dim rs as rdoResultset
Dim cn as rdoConnection

Set cn = OpenConnection....
Set rs = cn.OpenResultset("Select * from Authors", rdOpenStatic)
Set rs = cn.OpenResultset("Select * from Titles", rdOpenDynamic)

This code opens two separate rdoResultset objects; both are stored in the rdoResultsets
collection.    After this code runs the second query, which is stored in rdoResultsets(1), is 
assigned to the rdoResultset variable rs.    The first query is available and its cursor is still
available by referencing rdoResultsets(0).    Because of this implementation, more than one 
member of the rdoResultsets collection can have the same name.
This behavior permits you to maintain existing rdoResultset objects, which are 
maintained in the rdoResultsets collection, or close them as needed.    In other words, you
must explicitly close any rdoResultset objects that are no longer needed.    Simply 
assigning another rdoResultset to a rdoResultset-type variable has no affect on the 
existing rdoResultset formerly referenced by the variable.    Note that the procedures and 
other temporary objects created to manage the rdoResultset are maintained on the 
remote server as long as the rdoResultset remains open.
If you write an application that does not close each rdoResultset before opening 
additional rdoResultset objects, the number of procedures maintained in TempDB or 
elsewhere on the server increase each time another rdoResultset object is opened.    Over
time, this behavior can overflow the capacity of the server or workstation resources.



NewEnum Property Not Supported By SelectedComponents or 
ControlTemplates Collection (ReadMe)

The SelectedComponents Collection (Add-In) topic in online Help incorrectly lists the 
NewEnum property as a property of the collection, and the NewEnum property topic 
incorrectly lists the SelectedComponents collection as an object the property applies to.
Similarly, the ControlTemplate Object, ControlTemplates Collection (Add-In) topic in online 
Help incorrectly lists the NewEnum property as a property of the collection, and the 
NewEnum property topic incorrectly lists the ControlTemplate object and 
ControlTemplates collections as objects the property applies to.



Appearance Property Not Supported by HScrollBar and VScrollBar 
Controls (ReadMe)

The online Help topic for the HScrollBar and VScrollBar controls incorrectly lists the 
Appearance property as a property of these controls.



DBGrid Control Does Not Correctly Rebuild Columns (ReadMe)

When you use the Remove method against the DBGrid control, existing columns of the 
grid are removed.    However, when you subsequently use the Add method to add new 
columns, column data from the previous columns re-appear.    Whenever you remove 
existing columns or add new columns to the DBGrid control, use the ReBind and Refresh 
methods once all changes have been made.    This instructs the DBGrid control to rebuild 
its internal column layout matrix to correctly reflect the true status of the control.



Executing RDO Queries Returning Multiple Resultsets (ReadMe)

When executing Remote Data Object (RDO) queries that return more than one set of 
results, you can use only the ODBC cursor drivers.    The Microsoft SQL Server server-side 
cursors do not support result sets that return more than a single set of results.    To enable 
the ODBC cursor driver, set the rdoEnvironment object's CursorDriver property to 
rdUseODBC before creating the cursor.



Settings for the Action Property (MAPI Session Control) (ReadMe)

The settings as listed in the Action Property (MAPI Session Control) online Help topic are 
incorrect.    The correct settings are:
mapSignOff
mapSignOn



Remote Automation Connection Registry APIs (ReadMe)

Part of the Visual Basic 4.0 support for Remote Automation is a Connection Registry utility, 
(RACREG32.DLL for 32-bit applications and RACREG16.EXE for 16-bit applications), which 
allows applications to programatically read and set the Remote Automation registry 
information for OLE objects.    This allows applications to control which server machine on 
which they want to run an OLE object, assuming it has been previously installed on the 
specified servers, including running the object locally or remotely or changing the location 
of an object from remote server1 to remote server2.    The Connection Registry utility has 
two APIs (methods), SetAutoServerSettings and GetAutoServerSettings. 

Note      RACREG32.DLL and RACREG16.EXE may be freely distributed with any application 
developed with Visual Basic, Enterprise Edition.

SetAutoServerSettings   Method  
GetAutoServerSettings   Function  



SetAutoServerSettings Method (ReadMe)

Sets the Remote Automation registry values to meet OLE and Remote Automation 
requirements, including configuration settings for remote server access.

Syntax
object.SetAutoServerSettings (Remote, [ProgID], [CLSID], [ServerName], [Protocol], 
[Authentication])
The SetAutoServerSettings method syntax has these parts:
Part Type Description
object RegClass An object variable of type RegClass.
Remote Boolean True if the server is remote, False if local.
ProgID Variant The ProgID for the server.
CLSID Variant The CLSID for the server.
ServerName Variant The name of the server machine.
Protocol Variant The RPC name of the protocol to be used.
Authentication Variant The RPC authentication level.

Return Values
The method returns the following error codes:
Value Description
0 No error.
1 Unknown run time error occurred.
2 No protocol was specified.
3 No server machine name was specified.
4 An error occurred reading from the registry.
5 An error occurred writing to the registry.
6 Both the ProgID and CLSID parameters were missing.
7 There is no local server (either in-process or cross-process, 16-bit or 32-bit).
8 There was an error looking for the Proxy DLLs, check that they were installed 

properly.
Remarks
The SetAutoServerSettings method will take either a CLSID or a ProgID and set the 
registry information to local or remote depending on the value of the Remote parameter.    
If a CLSID and a ProgID are passed to the method, the CLSID will take precedence.

Example
This example switches the Hello server from local registration to remote, and back.    See 
the \SAMPLES\REMAUTO\HELLO directory for the code for the Hello World sample project.
Sub SwitchHello()

Dim oRegClass As New RegClass
' Register Hello to run remotely on a machine called Server1.
oRegClass.SetAutoServerSettings True, "HelloProj.HelloClass",1 _
ServerName:="Server1", Protocol:="ncacn_ip_tcp"
' Register Hello to run locally again.
oRegClass.SetAutoServerSettings False, "HelloProj.HelloClass"

End Sub



GetAutoServerSettings Function (ReadMe)

Returns information about the state of an OLE object's registration.
Syntax
object.GetAutoServerSettings ([ProgID], [CLSID])
The GetAutoServerSettings method has these parts
Parameter Type Description
object RegClass An object variable of type RegClass.
ProgID Variant The ProgID of the OLE class.
CLSID Variant The CLSID of the OLE class.

Return Value
The GetAutoServerSettings method returns a Variant that contains an array of values 
about the given OLE class.    The index values and descriptions shown in the following table.
Value Description
1 True if the server is registered remotely.
2 Remote machine name.
3 RPC network protocol name.
4 RPC authentication level.
If a value is missing or not available, the value will be an empty string.    If there is an error 
during the method, then the return value will be a Variant of type Empty.

Example
This example retrieves information about a remotely registered Hello object.
Sub ViewHello()

Dim oRegClass As New RegClass
Dim vRC As Variant
vRC = oRegClass.GetAutoServerSettings("HelloProj.HelloClass")
If Not(IsEmpty(vRC)) Then

If vRC(1) Then
MsgBox "Hello is registered remotely on a " _
& "server named: " & vRC(1)

Else
MsgBox "Hello is registered locally."

End If
End if

End Sub



Cascades, Local Tables and Replication Don't Mix (ReadMe)

Cascade updates and deletes are not supported between local tables in a replicated 
database.    If you have local tables in a replicated database, and you have cascades turned
on for these local tables, then updates and deletes at the primary table are not supported.

Note      It is unusual to use cascade updates on local tables.    Local tables are expected to 
be used for simple tasks, and cascades is an advanced feature.



Creating Parameter Queries Example Incorrect (ReadMe)

This topic applies only to the Enterprise Edition of Visual Basic 4.0.
The final example in the online Help topic Creating Parameter Queries is coded incorrectly.   
A correct example is shown below.    Note that you use the variable set to the created 
rdoPreparedStatement to create the rdoResultset, which is not shown correctly in the 
Help example.    This example executes a stored procedure that expects two input 
parameters and returns two output parameters along with a return value argument.
Dim SQL As String, MyOutputVal1 As Variant
Dim MyOutputVal2 As Variant, MyRetVal As Variant
Dim cn As rdoConnection, rs As rdoResultset

rdoEnvironments(0).CursorDriver = rdUseOdbc
' To permit execution on SQL Server 6.0 Set 
' cn=rdoEnvironments(0).OpenConnection(dsname:="MyDSN",
' Prompt:=rdDriverNoPrompt)

' Use ODBC parameter argument syntax.
SQL = "{ ? = call MyProcName (?, ?,?,?) }"

Dim Ps As rdoPreparedStatement
' Create reusable rdoPreparedStatement.
Set Ps = cn.CreatePreparedStatement("PsTest",SQL)

' Set Parameter "direction" types for each parameter,
' both input and output.
Ps(0).Direction = rdParamReturnValue
Ps(1).Direction = rdParamInput
Ps(2).Direction = rdParamInput
Ps(3).Direction = rdParamOutput
Ps(4).Direction = rdParamOutput

' Set the input argument values.
Ps.rdoParameters(1) = "Test%"
Ps.rdoParameters(2) = 1

' Create the result set and populate the Ps values.
Set rs = Ps.OpenResultset(rdOpenStatic)

MyRetVal = Ps(0) ' Contains the return value argument.
MyOutputVal1 = Ps(3) ' Contains the first output parameter.
MyOutputVal2 = Ps(4) ' Contains the second output parameter.



Using SQLExecDirect (ReadMe)

The rdExecDirect option is available when executing queries that do not require the 
creation of temporary stored procedures or where creation of these procedures affects 
performance.    This option uses the ODBC API SQLExecDirect function to execute the 
query when invoking the RDO OpenResultset or Execute methods.    If you do not use 
this option, the ODBC driver creates a temporary stored procedure that is used to execute 
the actual query.    In cases where you execute the same query repeatedly, this method 
provides better performance.    However, if you must use SQL syntax that is unacceptable 
to the ODBC layer but recognized by the remote database engine, use the rdExecDirect 
option to bypass the creation of the temporary stored procedures.
In some situations, temporary stored procedures are not removed until the connection to 
the remote database engine is closed.    Using the SQLExecDirect option can eliminate this
problem as the procedures are not created.



Connecting to ODBC Data Sources with no DSN (ReadMe)

It is possible to open a connection to a remote database server without first creating a 
permanent DSN entry by specifying additional information in the Connect property.    
Basically, the connect string must provide the minimum information contained in the DSN: 
Driver, Server and usually Database.    The following example shows how to open an RDO 
connection to Microsoft SQL Server without using a DSN:
Cnct$ = "Driver={SQL Server};Server=MySQLServer;Database=MyDB"
Set cn = rdoEnvironments(0).OpenConnection(dsname:="",Connect:=Cnct$,
prompt:=rdDriverNoPrompt)

This strategy does not work when opening ODBC connections using the Microsoft Jet 
database engine with the Data control, or Data Access Objects.    However, it does work 
when using the RemoteData control.

Caution        Do not attempt to use this feature with Jet ODBC connections as it causes a 
General Protection Fault error.



Syntax For the OpenResultset Method (ReadMe)

The syntax for the OpenResultset method currently states:
Set variable = connection .OpenResultset(source [, type [, locktype [, options]]])
Set variable = object .OpenResultset([type [, locktype [, options]]])
The source argument should be name, and the options argument should be option.    The 
correct syntax is as follows:
Set variable = connection .OpenResultset(name [, type [, locktype [, option]]])
Set variable = object .OpenResultset([type [, locktype [, option]]])



Using CompactDatabase with Microsoft Access Databases (ReadMe)

You should not use the CompactDatabase method when converting databases created or 
maintained with Microsoft Access if you expect to subsequently use them with Microsoft 
Access version 7.0.    To convert Microsoft Access databases from one version to another, 
use the Compact Database menu command within Microsoft Access version 7.0.
If you use the CompactDatabase method from Visual Basic version 4.0, the database 
cannot be opened by Microsoft Access version 7.0, and you must revert to a backup copy 
and use Microsoft Access version 7.0 to perform the conversion.
Databases converted by Microsoft Access version 7.0 can be opened and manipulated by 
Visual Basic 4.0.



Unable to Access MAPI Functionality Under VB32.EXE (ReadMe)

If you attempt to run a program under VB32.EXE that accesses MAPI functionality, such as 
the VBMAIL sample distributed with Visual Basic, you may be unable to perform MAPI 
functions such as SignOn.    The reason for this may be that your operating environment 
does not have 32-bit MAPI DLLs installed properly.
For example, on Windows 95, you must install Mail during the operating system setup, or 
install it separately from the control panel to correctly use MAPI functions or MAPI custom 
controls from Visual Basic.



Let and Set statements and Property Let and Property Set 
Procedures (ReadMe)

Two Visual Basic statements are used in combination with the assignment operator (=).    
The Let statement, although usually implicit, is used for assigning values.    The Set 
statement, which must always be explicit, is used for assigning object references.    If you 
use Let instead of Set when assigning an object reference, you will generally end up 
assigning the value of the object's default property.    Attempting to use the resulting 
variable as an object reference will usually result in an error, such as    Error 424 Object 
required.
Property procedures allow you to execute code, in addition to simple Let and Set statements and 
assignments.    Such code might validate ranges for a property or type of object reference. To create a 
procedure that executes code whenever a user assigns a value to a property, use a Property Let 
procedure.    To create a procedure that executes code whenever a user sets an object reference, use a 
Property Set procedure.    To create a procedure that executes code whenever a user obtains either a 
value or an object reference, use a Property Get procedure.



Coercion of Hexadecimal Values (ReadMe)

You can use the type-declaration character to prevent sign extension when using 
hexadecimal values.    For example: 
Print &H82A0 ' Prints -32096
Print &H82A0& ' Prints  33440



Administration of Component Catalogs (ReadMe)

A bug in the Component Manager can create Component Catalog database errors if two 
users try to update the contents of a remote or shared Component Catalog at the same 
time.    To avoid this problem, only one user at a time (the designated administrator) should 
be given write permission to a Component Catalog database.    Your ODBC database 
administration tools should be used to assign user read/write permissions to the Catalog 
ODBC database.    The Component Manager will then use these permissions to disable 
update commands in the Component Manager's user interface.



Samples Help File Refers to Wrong Chapter For BIBLIO.VBP 
(ReadMe)

The description of the BIBLIO.VBP sample application in the SAMPLES.HLP file contains the 
following text:
This sample allows you to browse the BIBLIO.MDB database, which is located in the main 
Visual Basic directory (\VB).    The sample demonstrates the Data control.    For more 
information, see Chapter 12, "Accessing Databases with the Data control," in the 
Programmer's Guide
The chapter information is incorrect. Instead of Chapter 12, it should be Chapter 22.



Books Online Path (ReadMe)

If you have a previous installation of Visual Basic and you install it a second time to a new 
location, Books Online will fail to run.    In this case, setup doesn't update the BooksExePath 
and/or BooksExePath16 entries in the VB.INI file with the new location for Books Online.    To
correct the problem, enter the correct location for Books Online in the BooksExePath and 
BooksExePath16 entries in VB.INI.



Version Compatibility Feature Does Not Work For Some OLE Servers 
(ReadMe)

The Version Compatibility feature for OLE servers is described in the section "Version 
Compatibility" of Chapter 2, Building OLE Servers, in the Professional Features book, 
Creating OLE Servers.    In brief, this feature allows a developer to enhance an OLE server 
by adding new objects and methods, while maintaining backward compatibility for OLE 
client applications compiled with older versions of the OLE server.
Due to last-minute changes in the product, the Version Compatibility feature does not work 
under the following conditions:    (1) an OLE client application uses early binding to refer to 
objects provided by an OLE server; (2) the OLE server runs out-of-process with respect to 
the OLE client; (3) the new version of the OLE server is only version compatible, rather than
version identical.
When these conditions are met, as explained below, the OLE client application cannot use a
new version of the OLE server that is produced according to the rules for version 
compatibility.    If the existing client makes OLE calls to the new version of the OLE server, 
the calls will fail with OLE Automation error -2147319765, (&H8002802B), Element not 
found.
Early binding, referred to in condition (1), means that the OLE client contains variables 
declared using the names of Public class modules exposed by the OLE server.    For 
example, the following code from an OLE client shows early binding to a Sprocket object 
exposed by the Widget server:

Private Sub Command1_Click()
Dim s As Widget.Sprocket ' Use early binding.
Set s = New Widget.Sprocket
s.Spin ' Call the Spin method of the Sprocket object.

End Sub

By contrast, if the OLE client uses variables declared As Object, the objects are late 
bound, and the client can use compatible versions of the OLE server without causing errors.
However, this method of accessing objects is slower than early binding, and the 
CreateObject function must be used instead of the New operator.
Out-of-process, referred to in condition (2), means that the objects early bound by the OLE 
client are provided by an OLE server running in a separate process space.    An OLE server 
that is compiled as an .EXE file is always an out-of-process OLE server.
By contrast, an in-process OLE server is compiled as a .DLL file, and when it is used directly
by an OLE client (that is, the DLL is loaded into the OLE client's process space), the version 
compatibility feature works as described in Creating OLE Servers.
Any object obtained from an OLE server running on another computer, using the Remote 
Automation feature of Visual Basic Enterprise Edition, is out-of-process with respect to the 
OLE client, regardless of the type of OLE server in which it originated.
Whenever a reference to an object is passed across process boundaries, even between two 
OLE client applications running on the same computer, the object is out-of-process with 
respect to the second OLE client.
Version compatible, referred to in condition (3), means that an OLE server has been 
enhanced by the addition of new classes, or new methods to existing classes.    If the only 
changes you have made to an OLE server involve the internal implementation details of 
existing methods, then the new version is classified as version identical, and all OLE clients 
compiled using previous versions will continue to work correctly.
If you require version compatibility for an OLE server, that is, if client applications compiled 
using one version of an OLE server must work with all subsequent versions of the OLE 
server, you can follow these guidelines for OLE client applications:    (1) If the objects 
provided by the OLE server will be used out-of-process, especially between different 
computers, make sure that OLE clients use late binding (Dim objWidget As Object) for 



those objects.    (2) If the OLE server is compiled as an OLE DLL, and used in-process by an 
OLE client, the OLE client can use early binding.



Restrictions on Creating Version Incompatible OLE Servers (ReadMe)

The Version Compatibility feature for OLE servers is described in the section "Version 
Compatibility" of Chapter 2, Building OLE Servers, in the Professional Features book, 
Creating OLE Servers.    In brief, this feature allows a developer to enhance an OLE server 
by adding new objects and methods, while maintaining backward compatibility for OLE 
client applications compiled with older versions of the OLE server.
This item adds a restriction not found in the documentation.
You may find it necessary to enhance an existing OLE server so that it is version 
incompatible with previously distributed OLE clients, as defined in the reference cited 
above.    For example, changing the number of parameters required by an existing method 
will cause the new version to be incompatible with previous versions.    Visual Basic marks 
the server so that previously compiled OLE clients cannot use it.
To ensure that OLE clients compiled with earlier versions of the server will continue to work,
there are three things you must do when compiling a version incompatible OLE server:

Use the Make EXE File or the Make OLE DLL File dialog box to enter a new name for 
the .EXE or .DLL file, to prevent the incompatible version from replacing older versions 
already installed on client computers.

On the Project tab of the Options dialog box, enter a new Project Name for the OLE 
server, to prevent the incompatible version from replacing Windows Registry information for 
objects supplied by older versions.

On the Project tab of the Options dialog box, clear the Compatible OLE Server field, to
ensure that the incompatible version does not use the same type library identifier as older 
versions.
The first two items in the list are mentioned in the documentation cited earlier, and in 
warning messages provided during the compilation process.    The last item is an additional 
restriction not found in the documentation or compilation warnings.



Dynaset's Visibility of Extraneous Changes (ReadMe)

In Visual Basic 3.0, the user always saw extraneous changes made to underlying data when
viewing the data through a Dynaset object.    This was because Visual Basic 3.0 would call 
Jet's Idle method every time it entered the idle loop.    In Visual Basic 4.0 you cannot call 
the Jet idle loop.    Because of this, you will not see those changes unless you force Jet to do 
its idle processing.    To force this, you should call DBEngine.Idle at points in your code 
where you would look at underlying data of dynaset-type Recordset objects.



Using Image or Text Data Types with the RemoteData Control or RDO
(ReadMe)

A known bug prevents complete use of Image or PictureBox controls with the 
RemoteData control.    While it is possible to read TEXT and IMAGE datatypes using the 
RDC, it is not possible to update this type of column.    It is possible to update these 
columns using RDO code or with the Data control.
Note that graphics columns created by Microsoft Access must be accessed with OLE 
controls, not Picture or Image controls.



Accessing SQL Server 6.0 Tables with Identity Columns (ReadMe)

If you attempt to access a SQL Server 6.0 table that includes an identity column, you can 
trigger an erroneous 3622 error.    To prevent this problem, use the dbSeeChanges option 
when using the OpenRecordset method or 512 in the Options property of the Data 
control.    This applies to attached SQL Server tables as well as those opened directly.



Toolbar Control Example (ReadMe)

When you run the Toolbar control example, the toolbar buttons are not in their proper 
positions.    To see all buttons on the Toolbar example, manually resize the form.



Can't Open FoxPro Table Contained in a Database Container 
(ReadMe)

Jet cannot open a FoxPro 3.0 table that is contained in a FoxPro 3.0 database container.    
Tables that are not contained in a database will open correctly.    If you attempt to attach to 
one of these tables, you will get a blank dialog box.



RemoteData Control EOFAction Property (ReadMe)

When accessing an empty, updatable results et with the RemoteData (RDC) control, you 
cannot depend on the EOFAction property to force the control to switch to AddNew mode.
To add the first record to an empty result set, you must use the AddNew method against 
the RemoteData Resultset property.    This will be corrected in a later release of the 
control.



TreeView Sorted Property Doesn't Sort Nodes Automatically 
(ReadMe)

The Sorted Property (TreeView Control) topic has this statement:
"In either case, setting the Sorted property to True mans any new Node objects added to 
a Node or TreeView control will be sorted automatically."
This is not true. After nodes are added, you must reset the Sorted property to True to sort 
the newly added nodes.



Miscellaneous Jet Database Replication Issues (ReadMe)

Update Conflicts Should be Resolved Periodically
For databases containing autogenerate (random autonumber) columns, update conflicts 
should be resolved periodically, to prevent sync failures.    For a table containing an 
autogenerate (random autonumber) column, if two replicas update the same record, cause 
a conflict, and therefore create an entry in the side-table

AND, before the conflict is cleared, the replicas attempt to update the same two records 
again, and the same replica "loses" (does not succeed in updating the record),

THEN, when the system attempts to update the side-table with this new conflict, the 
synchronization will fail.    The workaround is to clear the initial conflict before having the 
same replicas sync.    This could be accomplished by several different methods:

a)    delete the specific rows in the conflict table,
b)    delete the whole conflict table,
c)    using DAO    (see the Help topic "Resolving Synchronization Conflicts").

In Access, you can also use the Conflict Resolution Wizard.

Cascade Updates and Deletes
Cascade updates and deletes are not supported between local tables in a    replicated 
database.    If you have local tables in a replicated database, and    you have cascades 
turned on for these local tables, then updates and deletes at the primary table are not 
supported.

Excess Lock Conflicts
Two clients programs on one Windows 95 machine accessing the same remote database 
may experience excess lock conflicts.    This issue is particularly noticeable when running 
replication and the transporter.



Remote Data Objects and Case-Sensitive Servers (ReadMe)

When using remote data objects against a SQL Server that has case-sensitivity enabled, if 
your table name contains any upper-case letters the Update method will fail with an 
'invalid object <table name>' error.    This will only occur when using the ODBC Cursor 
Library against a case-sensitive SQL Server.

To work around this problem you have several options:

Remove case-sensitivity from the SQL Server
Make your table names all lower-case
Use server-side cursors

If the above options are not available you can issue update SQL statements to the server 
using the Execute method.
This does not affect Oracle servers.




